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STRUCTURE OF SPACES OF C*-FUNCTIONS
ON NUCLEAR SPACES

BY
J. F. COLOMBEAU AND O. T. W. PAQUES'

ABSTRACT

Let E be a real nuclear locally convex space; we prove that the space €, (E), of
all C*-functions of uniform bounded type on E, coincides with the inductive
limit of the spaces &y,.(E,) (introduced by Nachbin-Dineen), when V ranges
over a basis of convex balanced 0-neighbourhoods in E. Let E be a real nuclear
bornological vector space; we prove that the space €(E) of all C*-functions on
E coincides with the projective limit of the spaces &,.(Ey), when B is a closed
convex balanced bounded subset of E. As a consequence we obtain some
density results and a version of the Paley-Wiener-Schwartz theorem.

Introduction

Recent clarifications of differential calculus in locally convex spaces in
Colombeau [4] and new applications of the spaces of C*-functions on nuclear
spaces in Colombeau [5], [6], motivate a deeper study of these spaces of
C~-functions. The main spaces of C~-functions (due to their mathematical
properties and their relevance in applications) are the space €(E) of all
C~-functions over a real nuclear bornological vector space E and the space
&.(E) of all C™-functions of uniform bounded type over a real nuclear locally
convex space E (this space &.(E) was introduced more recently in
Colombeau-Mujica [9], Colombeau-Paques [10], Colombeau [4]).

In this paper we prove that these two spaces €(E) and &€.,(E) may be
considered respectively as projective and inductive limits of spaces &ww.(H),
which are “very good” spaces of C”-functions on separable real Hilbert spaces H
introduced in Nachbin-Dineen [13]. In the complex case, i.e. for holomorphic
functions over E, similar results had previously been proved in
Colombeau-Matos [7], [8], but the proofs in the real case are quite different and
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more difficult. These results bring important clarifications of these concepts and
some consequences (density results and Paley-Wiener-Schwartz theorems) are
explained at the end of the paper.

I. Recalls, notations and terminology

We use classical notations and terminology (see Colombeau [4],
Ansemil-Colombeau [2], Abuabara [1], Colombeau-Matos [7], [8],
Colombeau-Mujica [9], Gupta [11] and Nachbin-Dineen [13]). If E is a real
locally convex space (l.c.s., for short) we recall that €.,(E) is the inductive limit,
when V ranges over a base of convex balanced 0-neighbourhoods of E, of the
spaces &,(Ey) (the space of all infinitely differentiable functions on E, which are
bounded, with all their derivatives on each bounded subset of Ey), i.e. an
element f of €.,(E) may be considered as a function on E that may be
factorized as f = f o sy, for some V, where s, : E — E, denotes the canonical
map (Ey = E/p+(0) normed by the gauge py of V) and with f in &,(E,). We
endow &,(E,) with the topology of uniform convergence of the functions and all
their derivatives on each bounded subset of E, and &,,(E) with the locally
convex inductive limit topology of these spaces.

Now we recall some definitions in Nachbin-Dineen [13]. Let E be a normed
space such that its strong dual E' has the approximation property (a.p. for short).
We consider the completed topological tensor product E'w®" of E’, n times and
L("E)= L("E;C) the space of the n-linear continuous functions on E, with its
usual norm. We have a continuous injection:

E'n®" -5 L('E),
@@ ®@)P @ X X,
where
(X X @) (X1, 3 X)) = @1(X1) "+ * @ (%),

which admits an injective continuation:
A
E'7w® > L("E).

We define #~("E ):—; P.("E; C) (the nuclear n-homogeneous polynomials) as
the subspace of E'm®" made of those elements which are symmetric functions
wher}\ considered via ¥ in L("E). P~("E) is equipped with the norm induced by
E'7w®" that is called the nuclear norm | |-
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For the convenience of the sequel we are going to slightly reformulate this
nuclear norm. Let P be a nuclear n-homogeneous polynomial. Then

(1) - 2 ®--®¢,, where ¢, EE’ (Schaefer [14], p.94),

1Pl =

{31641 Mou e}

over all the
representations of
P of the type (1)

where

o, lle-=sup{| &, (x)[s|x|=1}  (Schaefer [14], p. 93).

We have the following:

Lemma 1.1. ||P | =[P, ps-, where || |, so- is the gauge of ', B"®" (B’ is
the closed unit ball of E').

Proor. First we recall that
r,B®" ={E AT, ®- - ®T,, where D, |A,|=1and T, EB'} .
1=0 =0

If | P lr, g~ = p, then for every & >0, we may write

P=(p+e)20)\,’1",,®'~®?},,
where
2 J|=1, T,€B,

hence || P||n= u + ¢, and then
1Pl = 1P, po-

Now, if || P = u, then for every £ >0, | P|lx= u + &, hence we may write
pP= 20 ¢1, ® tht ® d)n,’ where 20 ”d)l, ”E” o ”‘;bn, ngé i1 + €.
1= 1=

If p, :”¢1, fle - "||¢.., lle, then Ziop, [=p +¢ and

p$ s
P=2 ¢IME® e

hence || P|lr, so-= p + ¢, and we have || Plr, s = || Pl [ |
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Let E be a real normed space such that E’ has the a.p. We denote by €no(E)
(the infinitely nuclearly differentiable functions of bounded type on E) the
subspace of all infinitely differentiable functions f : E — C, such that

(a) d"f maps E into Pn("E), ¥n €N,

(b) d"f : E — @u(E) is differentiable and bounded on bounded subsets of E,
Vn €EN.

The topology of &no(E) is the one generated by the following countable
system of seminorms:

G () =sup{ld'f(x)lv; 0= i=n,|x|=m}, nm=0,1,,

for every f in €n(E).

We denote by €n.(E) (the infinitely differentiable functions of bounded-
compact type on E) the closure in &x,(E) of the vector space generated by all
the functions of the form ¢®", ¢ € E’, n €N (i.¢c., the continuous polynomials of
finite type on E).

A counterexample of Abuabara [1] shows that Exu.(E) # Enu(E), in general.

If E  is a real bornological vector space (b.v.s. for short) separated by its dual
E*, we denote by €(E) the space of all infinitely differentiable functions on E,
endowed with the topology of uniform convergence of the functions and their
derivatives on the strictly compact subsets of E.

II. Structures of the spaces &,,(E) and €(E)

We recall that if E is a real nuclear l.c.s., there is a base of 0-neighbourhoods
(V.) in E such that the spaces E., are separable pre-Hilbert spaces and E is the
projective limit of Ey, (Schaefer [14], p. 102).

THeOREM 2.1. If E is a real nuclear l.c.s., then one has algebraically and
topologically

Z.(E) = inductive limit of €xv.(Ev),

when V ranges over a base of 0-neighbourhoods in E such that Ey is a separable
pre-Hilbert space.

Now let E be a real b.v.s. and let B(E) be the set of all bounded closed
convex balanced subsets of E. We recall that if E is a real nuclear b.v.s., then
there is a bornological representation E =inductive limit of Ej, where
B € B(E) and the spaces Ej are separable Hilbert spaces (Hogbe-Nlend [12]).
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THEOREM 2.2. If Eis a real nuclear b.v.s., then algebraically and topologically
&(E) = projective limit of Exv(Es),

where B € B(E) are such that the spaces Eg are separable Hilbert spaces and E is
the inductive limit of Ep.

For the proofs of these theorems we use the following lemmas:

LemMma 2.3. IfE, and E, are two real normed spaces such that E| has the a.p.,
with a nuclear linear mapping i from E, into E, and if f is in &, (E,), then foiisin
&no(E1). Moreover, the mapping

¥ Eu(E)— Eng(El)
f=fei

is continuous.

Proor. Since i is a nuclear map, for every x € E,,

i(x)="§=:,l AnX (X )Y,

with
Snlst Ixila=t Inlsst,
for each n =1,2,---. Hence for n in N,
(Foi)(x)h -~ h, = % Ag o Ag ()« xt (R F3X)y,, Ve,
and

1) ‘i"(f”')(x): qz Ag - Aq..f(")(ix))’ql ot )’q4xt:\ Q- .®x"1n'

Since Z, A, A, EC0|A|)"=1, and fE%(E), we have that
d"(f°i)(x) € Pn("E). Furthermore, the image through d"(f<i) of a bounded
subset in E is a bounded set in Py("E), because f € &,(E;) and |y, [, = 1. Now,
we must prove that the map

d"(foi): E,— Pu("E)

is differentiable. Since

(FoiY (e +h)= 3 o A fH0x + By - Yokl X X x,,
9
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and
fix +ih) = f@(>ix) + f"D(ix )ik + r. (ih),

where r, (ih) is a remainder, we have that

dr(fei)(x +h)=d"(Foi)(x)= 2 Ao+ g fO (X )ihys, * Yo x5 @ - R xy,
L
2 A At (R )Ya Ve X0 & @i
9k

The first term of the above sum, considered as a function of A, is linear bounded.
For the second term, we have

I (ih) EAT{F " D(ix ) + ith (ih }os.=1,

where the closed convex balanced hull T is taken in the Banach space L"(E>).
(See Colombeau [4].) Then this term is contained in cte.(]|h |y’ I',(Bi®"),
where B is the closed unit ball in Ej.

From Lemma 1.1, this proves the differentiability of the map d *(feoi)from E,
into Pn("E;). Then foi is in &n(E)).

Since &,(E.) and &x.(E:) are metrizable spaces, (1) gives also that the
mapping

&o(E>) —> €w(E))
f——fei
is continuous. ]

Remark. When we consider complex valued functions, we assume that all
Nachbin algebras (conditions 5.2.4 in Colombeau [4]) in the following results are
invariant under complex conjugation.

Lemma 2.4 (Approximation). Let E, and E, be two real normed spaces such
that E| has the a.p., with a nuclear mapping i from E, into E.,, that is,

i(x)=ni=1 AnX 5 (X)Yn,

with
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where x € B, the unit ball of E{, y, € B, the unit ball of E; (n =1,2,---), and
X EEl.
Forrin N, let

i (x)= Zl A (X )Y
for x in E., where A, x, and y, are as above in the representation of i.
If Y is a Nachbin subalgebra of &,(E,), if V" is a 0-neighbourhood in &x,(E))

and if f is an element of &,(E>), then for r large enough, there is an element s in Y,
such that foi— ol isin V.

PROOF. We denote by B, B and B, the closed unit ball in E,, E{ and E,
respectively. Let

V ={¢ € &w(E:)suchthat ™ (x) € y(»[,(B'®")),if 0=n =m and x € uB},

for some m €N, p and v >0, be a 0-neighbourhood in &ww(E:).
For r in N, let us denote by E,, the vector subspace of E, spanned by the
vectors yi, -+, y.. We first prove that for r large enough, we have

(¢))] fei—foi €1V
Like in Lemma 2.3, for n in N,
(Foi)™(x) =20 Agy v+ Mg fiX)Ygy -+ Yo X0 X - =+ X X1,
qx
and

(f°i,)(")(x) = E /\‘11 e /\an(")(i'x)y‘h U yqnxl,h XX x;n'
q,=r

In the difference (f i)™ (x)—(f<i)™(x) there are two types of terms:
(I) A finite number of terms (with g, =r):

T A ()~ f Ny ok, XX

Since i, converges uniformly to i on uB, if r -, i (uB,)C uB, and f™ is
uniformly continuous on uB,, we have that

[(F™(ix) = f™(ix))yq* - * Yo, | >0, whenr—» and xE€uB, (0=n=m).
(II) The infinite sum:

qE Ag e+ A‘Inf(")(ix)yql Tt Yq..x:n X XX,
{3
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with at least one of the g,’s larger than r.
Let

d, =; I’\qx,"'l’\qn

“(Z)-(EmI)

with at least one of the g.’s larger than r. Then d, — 0 when r — .

Now, since {f"X(y)} .8, is a bounded subset of L("E-) and i(uB;)C uB,,
Yo, € B2, x,, € Bi, we have (1) from (I) and (II), for r large enough.

Now we are going to prove that for any fixed given r large enough we have

2 I in Y, such that foi, —foi, €17

We set f, =f/E,, and then foi, =f o,
In €(E.,), let us apply Nachbin’s approximation theorem: given ¢ > 0, there
is ¢. in Y/E,,, such that for every x in uB,N E,,, 0=n = m, then

G) Id"f,(x) = d"¢. (x)lls e, = &.
If § €EEL, 1=j=n, we have
(froi)P(x)er & — (@ o i) x)E1 -+ &
= PRk i — iRk i

Since in finite dimension the nuclear norm on ?("E,,) is equivalent to the
usual norm, (3) implies that

frix)— e&ix) € ¥ (e Ty(B32"),

if r is large enough and Bj; is the closed unit ball of (E.,).
Therefore we may write

fOix)— eix) =€ 2, AThX -+ X T
q=1

with =,_,|A,|=1 and T7 is in B}
Now, if & is in E;, 1=j =n, it follows that

(foi ) (X & = (@ 2 i )X )E1 - &,
=& 2 A(ThX X TP (iki -+ - i)

and thus

(f o)) = (@ 0k YV (x) =& 2 Ay (Tooir X -+ X Tjoip),
9
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with Tiei in B, |=j=n

Therefore

(f 0 i) (x) = (@c 0 i) (x) € X (e T (B1®"))

and this is true for every x in uB, and 0=n=m.
Hence

fei—g@eeiisini¥,  if e =v/2

(i.e., for r large enough).
Then we have 2) with §oi, = @, oi,. From (1)and 2), fei—¢ciisin?. N
As an immediate corollary of the above two lemmas we obtain:

Lemma 2.5. Let E, and E; be two real normed spaces such that E| has the
a.p., with a linear nuclear mapping i from E | into E,, then if fis in &,(E,), foiisin
Enc(E)) and the mapping

¥ : &(E\) = Ene(E))
frfei

is continuous.
Proor. From Lemma 2.3, it suffices to prove that f i may be approximated
in Enx{E,) by finite type continuous polynomials on E,. This follows from

Lemma 2.4, if we take Y as the set of the continuous homogeneous polynomials
on E,. The continuity of ¢ follows from Lemma 2.3. n

Proor or THEOREM 2.1.  If f is in B.,(E), there are a 0-neighbourhood V. in
E such that E., is a separable pre-Hilbert space and f in ,(E,,) such that
f=Ffosu

Since E is a nuclear l.c.s., there is a 0-neighbourhood V, in E such that the
canonical map i:E,,—E,, is a nuclear map. From Lemma 2.5, fei is in
&wuw(Ev,) and hence f is in the inductive limit of &xe.(Ev).

Conversely, if f/Ey is in Exo(Ey), tor some 0-neighbourhood V' in E, such
that Ey is a pre-Hilbert space, then f is in &.,(E), trivially. Hence the algebraic
equality.

The topological equality follows also by Lemma 2.5. ]

ReMaRk 1. This result is the C= -analogue of theorem 3.9 in
Colombeau-Matos [8] for holomorphic functions.

ReMARK 2. Note that if E is a DFN-space, §(E) = €.,(E) algebraically and
topologically, so all structures coincide in this case. (See Colombeau-Mujica [9].)
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PROOF OF THEOREM 2.2. Let B, be in %B(E) such that Egz is a separable
Hilbert space. Since E is a nuclear b.v.s., there is B. in B(E), B, C B, such that
the inclusion mapping i, : Eg, — Ej, is nuclear. Also there is Bs in B(E), B, C Bs,
such that the inclusion mapping i, : Ep,~— Ej, is nuclear. Hence mB, is relatively
compact in Ep, for every m €N.

Thus if f is in €(E), f/Es, = (f/Eg,)° i is in &,(Eg,).

By Lemma 2.5, f/Eg, = (f/Eg,) i, is in &n.(Eg,). This implies that f is in the
projective limit of Enp(Es).

From the trivial inclusion: projective limit of Exw(Es)C €(E) and Lemma
2.5, we have the algebraic and topological equality. |

ReMaRrk. This result is the C*-analogue of theorem 3.6 in Colombeau—-Matos
[8], for holomorphic functions.

III. Density results

THEOREM 3.1. Let E be a real nuclear l.c.s. and Y be a subalgebra of €.,(E)
such that there is a base (V,), of convex balanced pre-Hilbertian (-
neighbourhoods in E satisfying:

(1) For every i,

YV ={f € €,(Ey,) such thatfos,, € Y}

is a Nachbin subalgebra of €,(Ev,).
(2) Given V, in (V,),, there is V. in (V.), such that the canonical mapping
i:Ey,— E., is nuclear, i.e.,

;(x)=§ Ak X )Y,

with 222, |A. | =1, x}, in B}, the closed unit ball in E+,, y, in B,, the closed uni
ballin Ey, (n=1,2,-+), and x in E,,.
If we write forr €N

L(x)= Z} AnX (X)) Vs

with A, X,, V. as above and x in Ey,, we assume furthermore that for r large
enough, the set

{foi, forfE Y3}

is contained in Y".
Then Y is dense in €,(E).
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CorOLLARY 3.2. If E is a real nuclear l.c.s., then P:(E) (the finite type
continuous polynomials in E) is dense in €..(E).

CoroLLARY 3.3. If E is a real nuclear l.c.s., then the set

{ 2 ¢e's, ¢, €C, ¢ EE’}

finite

is dense in E.(E).

Let E = inductive limit of Es, B € B(E), be a real bornological vector space
separated by its dual E*. We recall that a subset () of E is said to be 7 E-open, if
for all B in B(E), Q2N Eg is an open subset of Ejg.

THEOREM 3.4. Let E be a real nuclear b.v.s. and let I be a Hausdorff locally
convex topology on E for which any bounded subset of E is 7 -bounded. Let () be a
7 E-open subset. A subalgebra A in €(Q) is dense in €(Q) if and only if the
following conditions are satisfied

(a) A is a Nachbin subalgebra

(b) for every B in B(E) such that Eg is a separable Hilbert space, every u in
(Es) @ (Es), every open subset w C 2N Eg, with u(w)C (), and every g in A, the
composition mapping g °(u/w) is in the closure of Ajw in €(w).

RemMARK. The above theorem improves theorem 5.2.1 of Colombeau [4].

Proor oF THEOREM 3.1. Let f be in é,(E) and ¥ be a 0-neighbourhood in
&uw(E). We desire to prove that there is ¢ in Y such that f—y¢ € 7. By
definition of &..(E), there are a O-neighbourhood V. in E and a function f in
&,(Ev,) such that f = fosy.. Since E is a nuclear l.c.s., there is a 0-neighbourhood
Vi in E, such that the linear canonical map i : Ey, — Ey, is nuclear. By Theorem
2.1, there is a 0-neighbourhood 7' in &ww(Ey,) such that if ¢ isin 77, then ¢ o 5y,
isin 7.

Now, it suffices to show that there is ¢, in €,(E,,) such that s, — foi € ¥; and
Yiosy, isin Y.

By Lemma 2.4 and (1) of the hypothesis, there is  in Y2 such that foi — s i,
isin 97, for r large enough. Take ¢, = ¢ o i, and then ¢, 05y, = (o )o sy, isin Y,
by (2) of the hypothesis. [

Proor oF THEOREM 3.4. The proof of the sufficiency in this theorem is in the
proof of theorem 5.2.1 of Colombeau [4].

Now, let A in €((1) be a dense subalgebra. It is classical that A is necessarily a
Nachbin subalgebra. Next, let u, B and w be as in condition (b) of the theorem
and let g in A be given.
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Since Ej; is a Hilbert space, (Es)' has the bounded approximation property.
then by Aron-Prolla [3], we have that %;(E;)/w is dense in &(w) and so gou/a
belongs to the closure of #;(Ez)/e@ in €(w).

Since the restriction mapping:

r:(E,T)—(Es ),
has dense range (see Colombeau [4] 5.1.6), then g ° u/w belongs to the closure of
P (E,T)w in E(w).
On the other hand, by the density of A, every element of %;(E, 7 )/ belongs

to the closure of A in €((). A fortiori every element of %;(E, J )/ belongs tc
the closure of A/w in €(w), which shows that A satisfies the condition (b).

IV. A version of the Paley-Wiener-Schwartz theorem

DEerINITION 4.1. Let E be a real nuclear l.c.s. The Fourier transform % from
&w(E) into #s(E¢) is defined by

(F1)(§)=1(e*),

if €€ E¢, if | is in &s(E), where E¢ denotes the complexification of the stron,
dual E’ of E and ¥, (E ¢) denotes the set of the S-holomorphic functions on E¢.
& is injective from Corollary 3.3.

DEerINITION 4.2. Let E be a real nuclear b.v.s. The Fourier transform % fromwr
&'(E) into ¥(E¢) is defined by

(F) (&)= 1(e*),

if £€EE¢ and [ is in €'(E). We recall that E* is endowed with its natura
topology and #(E¢) denotes the set of the holomorphic functions in E.
% is injective from theorem 5.2.6 in Colombeau [4].

Let E be a real nuclear b.v.s., E = inductive limit of Eg, such that B € B(E_
and Ej; is a separable Hilbert space. Let us equip €'(E) with its equicontinuow
bornology and its strong topology. We have by Theorem 2.2 that

1 &(E) = projective limit of &Exy.(Ez).
Now, since the restriction map
€ (E) — &nve(Ep )

¢ — ¢/Eg
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for each B in B(E) has a dense range (it follows by the fact that the restriction
map E*— (Eg) has a dense range, when Ej is a Hilbert space (see Colombeau
[4] 7.2.3)), and if Ep, C Ej,, the restriction map from &no.(Es,) into Enec(Eg,) has
a dense range, hence its transpose from lo.(Es,) into €xwc(Es,) is injective. Then
algebraicalily one has, from (1), that

&€'(E) = inductive limit of &{y.(Ez),

when B is in 9B (E) and Ej is a separable Hilbert space (and the equicontinuous
subsets of &'(E) are the subsets contained and equicontinuous in some
&c(Es))-

Thus, since % is injective, we have

F&'(E) = inductive limit of F&uw.(Ez)

when B € B(E) is such that Ej is a separable Hilbert space. Now, by Abuabara
[1], F&we(Es) = A ((E B)c) is the vector space of all f in #((E p)c ), such that:
(1) there are constants ¢ >0, m >0 and » €N, such that

lf@]=c+]£]s) exp(m | Im £]ls),

for every £ €(Ep)¢, where Im ¢ denotes the imaginary part of &

(2) The family (& ). in Y’ (where Y is the vector subspace of &ww.(Eg)
generated by all the mappings of the form e* : Eg — C where ¢ € E ), defined
by

! {
g=2 ae" €Y & (g)= 2, af(¢°P.)

is equicontinuous. (P, : Es — E; are the projections on the first n vectors of a
basis of Ez.)
Then

F&'(E) = inductive limit of A.,((E 5)c)-

This remark gives the Paley-Wiener—Schwartz theorem proved in
Ansemil-Colombeau [2] with another method.

Now, let E be a real nuclear lcs. and let E’ be the dual of E with its
equicontinuous bornology.

DEerINITION 4.3. We denote by o the vector subspace of s (E ) made of the
functions f such that, for every convex balanced 0-neighbourhood V in E, such
that E, is a separable pre-Hilbert space,



30 J. F. COLOMBEAU AND O. T. W. PAQUES Isr. J. Math.

) fFHEWc(x)|=c(1+|x]]v) exp(m |[Imx |v) for every x in (E})c and
some ¢ >0, v, m >0 (we recall that (E%)c = (Ey ) and that V denotes the polar
set of V).

(2) The sequence (£,). in Yo (where Y, C &,(Ev)is the subspace spanned by
the functions of the form e*, ¢ € (Ev)), defined by

i

g=2 e > 6(5)= 2 af(e-P.)

1=1

(where P, : Ev — E\y are the projections on the first n vectors of a basis of Ey),
is equicontinuous.

We remark that from (1) of the latter definition, & is contained in Exps (E¢)
(see definition 6.4 in Colombeau-Matos [7]).

This space o is equipped with its bornology naturally derived from (1) and (2),
that is, a family (f,).e; is bounded iff for every V in (1) the constants c, v, m are
uniform in { €I and in (2) the family (&.,).. is equicontinuous.

Let us equip the space €. (E) with its equicontinuous bornology.

THEOREM 4.4. The Fourier transform & is a bornological isomorphism between
€Ww(E) and A.

Proor. Let V be a convex balanced 0-neighbourhood in E such that Ey is a
separable pre-Hilbert space and let us denote by sv:E — E, the canonical
surjective map. Let 'sv : (Ev)t— E¢ be its transpose (‘sv is injective).

We have the map:

IV
ngc(EV) I gub(E)
f—=f°sv
and its transpose ‘Iy.
Let T be an element of €.,(E) and £ be in ‘sy(Ev)c, that is, £ ="sy ()=
nosy for some w in (Ev)é. Thus

tm)(p,) =I,(T)(e*)=(ToL,)(e*)= T(e'**)
=T(e*)= FT(¢),

where " denotes the usual Fourier transform in &%.(Ev).

Hence FT/'sy (Ev )& =Ty (T) belongs to A, ((E)c), by Abuabara [1]. Since it
holds for every V, #T € A.

Conversely, let U be in &. Given a 0-neighbourhood V in E, such that E is ¢
separable pre-Hilbert space, U/((E)?)c belongs to AL(((E)v)c). Thus Ue'sy i
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in A, ((Ev)¢). By Abuabara [1], there is an element Ty in €lw.(Ev), such that
N
Ty =(U-e'sy). Hence Tyv(e™)= U('sv(w)), for every w in (Ey)é.

If V,C YV, are two O-neighbourhoods in E,

'sv,(E v,)c C 'svi(E v, )e
and we have a restriction mapping
r: &noe(Ev,) — &nue(Ev,),
¢ —> ¢/Ey,.
Tv(¢)= Ty (r(p)), for every ¢ in &uw(Ey,), since
Ty(e*) = U(sw($)),
and
Tv,(e"®) = U(sv,>r(£)) = U(‘'sw,(€))

and since {e*, £ € (Ev,)¢} is dense in &ww(Ev,) (see Abuabara [1)).

Now we define T from €,(E) into C by T(f)= Tv(fv), if f = fvosv, with
fv € €nuc(Ev). Then FT = U and we have the algebraic equality between
F(&.(E)) and .

We remark that the Fourier transform from &\.(Ev) onto A ((Ev)é) is a
bounded mapping. This follows using Abuabara’s proof:

Let {f.}.c: be a bounded subset of &lu.(Ev). Then there are ¢ >0, m, v EN
such that

If(@)I=c - sup{ld*g()ll, k = w |lx]|= m},
for every a €I Now if £ = ¢ + iy is in (Ev)¢, then for k = v,
d*(e*)(x) = (i)  (x)- &~
Therefore,

sup{[d*(e) (), k =w x| =m}=(1+|¢

)e mimel
and

£ O = fule®) s +||¢

)”e mijim £]

The equicontinuity of the family (&.a ). defined in (2) in the definition of
A ((EV)c) follows from the equicontinuity of (f. )aer. Then {f.}ae: is a bounded
subset of A ((Ev)c)-
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Since &ww(Ev) and A ((Ev)c) are complete b.vs. and &\w.(Ev) has a
countable basis, the closed graph theorem (Hogbe-Nlend [12], prop. 2, p. 44)
gives that this Fourier transform is a bornological isomorphism.

The bornological isomorphism in Theorem 4.4 follows from this. |
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