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STRUCTURE OF SPACES OF Ca-FUNCTIONS 
ON NUCLEAR SPACES 

BY 

J. F. COLOMBEAU AND O. T. W. PAQUES* 

ABSTRACT 

Let E be a real nuclear locally convex space; we prove that the space ~ub(E), of 
all C~-functions of uniform bounded type on E, coincides with the inductive 
limit of the spaces ~Nbc(Ev) (introduced by Nachbin-Dineen), when V ranges 
over a basis of convex balanced 0-neighbourhoods in E. Let E be a real nuclear 
bornological vector space; we prove that the space ~(E) of all C~-functions on 
E coincides with the projective limit of the spaces ~N~(EB), when B is a closed 
convex balanced bounded subset of E. As a consequence we obtain some 
density results and a version of the Paley-Wiener-Schwartz theorem. 

Introduction 

R e c e n t  c lar i f icat ions of d i f ferent ia l  calculus  in local ly  convex  spaces  in 

C o l o m b e a u  [4] and  new app l i ca t ions  of the  spaces  of  C~-funct ions  on nuc lea r  

spaces  in C o l o m b e a u  [5], [6], mo t iva t e  a d e e p e r  s tudy  of these  spaces  of 

C~-funct ions .  The  main  spaces  of C~-funct ions  (due to thei r  m a t h e m a t i c a l  

p r o p e r t i e s  and  the i r  r e l evance  in app l i ca t ions )  a re  the  space  g ' ( E )  of  all 

C~-funct ions  over  a real  nuc lea r  bo rno log ica l  vec to r  space  E and  the space  

g'ob(E) of  all C~-funct ions  of un i fo rm b o u n d e d  type  ove r  a real  nuc lea r  local ly  

convex  space  E (this space  g'ub(E) was i n t roduced  m o r e  recen t ly  in 

C o l o m b e a u - M u j i c a  [9], C o l o m b e a u - P a q u e s  [10], C o l o m b e a u  [4]). 

In  this p a p e r  we p rove  tha t  these  two spaces  ~ ( E )  and  ~ub(E) may  be  

c ons ide r ed  respec t ive ly  as p ro j ec t ive  and  induct ive  l imits of  spaces  ~Nbc(H), 

which a re  " v e r y  g o o d "  spaces  of C~-funct ions  on  s e p a r a b l e  real  H i l b e r t  spaces  H 

i n t roduced  in N a c h b i n - D i n e e n  [13]. In the  co mple x  case,  i .e. for  h o l o m o r p h i c  

funct ions  over  E, s imi lar  resul ts  had  p rev ious ly  been  p r o v e d  in 

C o l o m b e a u - M a t o s  [7], [8], bu t  the  proofs  in the  real  case are  qui te  d i f ferent  and  
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more difficult. These results bring important clarifications of these concepts and 

some consequences (density results and Paley-Wiener-Schwartz theorems) are 

explained at the end of the paper. 

I. Recalls, notations and terminology 

We use classical notations and terminology (see Colombeau [4], 

Ansemil-Colombeau [2], Abuabara [1], Colombeau-Matos [7], [8], 

Colombeau-Mujica [9], Gupta [11] and Nachbin-Dineen [13]). If E is a real 

locally convex space (l.c.s., for short) we recall that ~ b ( E )  is the inductive limit, 

when V ranges over a base of convex balanced 0-neighbourhoods of E, of the 

spaces ~b(Ev) (the space of all infinitely differentiable functions on Ev which are 

bounded, with all their derivatives on each bounded subset of Ev),  i.e. an 

element [ of ~ub(E) may be considered as a function on E that may be 

factorized as f = f o Sv, for some V, where sv : E ~ Ev denotes the canonical 

map (Ev = E/p~l(O) normed by the gauge pv of V) and with f in ~b(Ev). We 

endow ~b(Ev) with the topology of uniform convergence of the functions and all 

their derivatives on each bounded subset of Ev and ~ub(E) with the locally 

convex inductive limit topology of these spaces. 

Now we recall some definitions in Nachbin-Dineen [13]. Let E be a normed 

space such that its strong dual E '  has the approximation property (a.p. for short). 

We consider the completed topological tensor product E '~  "| of E ' ,  n times and 
L(" E)  = L ( " E ; C)  the space of the n-linear continuous functions on E, with its 

usual norm. We have a continuous injection: 

where 

E',n -| ~ ' L("E) ,  

( ,p  | . . . | , p .  ) , ,p  , • . . . • , p .  , 

x . . . x , p . ) ( x , , .  . . ,  x . ) =  , p , ( x , ) .  . . ( x . ) ,  

which admits an injective continuation: 

E,~.~', , L("E) .  

We define ~N("E)~, ~ ( " E ;  C) (the nuclear n-homogeneous polynomials) as 

the subspace of E'Tr | made of those elements which are symmetric functions 

when considered via ,~ in L("E) .  ~N("E) is equipped with the norm induced by 

E'er | that is called the nuclear norm H IIN. 
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For the convenience of the sequel we are going to slightly reformulate this 
nuclear norm. Let P be a nuclear n-homogeneous polynomial. Then 

(1) P =  2 ck,, @ . . . @ 6 . , ,  
i = 0  

where 

IIPll = i n f  
o v e r  all the  

r e p r e s e n t a t t o n s  o f  
P of  t he  type  (1) 

where ~b,, E E '  (Schaefer [14], p. 94), 

II 6,, liE' = sup {I &,, (x)l;tl x 11 =< 1} (Schaefer [14], p. 93). 

We have the following: 

LEMMA 1.1. IIPIIN = IlPllr, o,| where 11 
the closed unit ball of E'). 

PROOF. First we recall that 

F~'B'| 

If liP IL,.,| g, then for every e > 0, we may write 

P =( /z  + ~ )  2 A,T,, @ . - - @ T , , ,  
t = 0  

H,., s.| is the gauge of r u , |  1~,~ (B' is 

where 

1 = 0  

hence II P IIN -<-. + ~, and then 

T,, E B', 

I[PIIN<=IIPIIr, ,,| o. 

Now, if l] P IIN </z,  then for every e > 0, II P [IN </x  + e, hence we may write 

e = E ~,, |  | ~.,, where E t1~1, lit . . . .  I1,o, 1I~, =< ~ + ~. 
I = 0  I = 0  

If/x, = ]l 4~,, lIE . . . .  II d,, liE', then 2;% I/x, [ < /x  + e and 

P 2 6,, ~ 6., 
=,=o ~ , ~  ~ "  �9 | i1~,, i1,, 

hence ]] P ]lrttz'| < /x  + e, and we have ]l P ]lr, s'~- =< ]] P IIN- 
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Let E be a real normed space such that E '  has the a.p. We denote by ~Nb(E) 

(the infinitely nuclearly differentiable functions of bounded type on E)  the 

subspace of all infinitely ditterentiable functions f : E ~ C, such that 

(a) d"f maps E into ~N(nE),  Vn • N, 

(b) dnf : E --> ~N(~E) is differentiable and bounded on bounded subsets of E, 

Vn ~N.  
The topology of ~Nb(E) is the one generated by the following countable 

system of seminorms: 

qm..(f)=sup{lld,f(x)llN;o<=i<-n, llxll<=m}, n ,m = 0 , 1 , . . . ,  

for every [ in ~Nb(E). 
We denote by ~ ( E )  (the infinitely differentiable functions of bounded- 

compact type on E)  the closure in ~Nb(E) of the vector space generated by all 

the functions of the form ~b | ~b E E',  n E N (i.e., the continuous polynomials of 

finite type on E). 
A counterexample of Abuabara [1] shows that ~N~(E) ~ ~ b ( E ) ,  in general. 

If E is a real bornological vector space (b.v.s. for short) separated by its dual 
E*, we denote by ~(E)  the space of all infinitely ditterentiable functions on E, 

endowed with the topology of uniform convergence of the functions and their 

derivatives on the strictly compact subsets of E. 

II. Structures of the spaces ~.b(E) and ~(E)  

We recall that if E is a real nuclear l.c.s., there is a base of 0-neighbourhoods 

(V,) in E such that the spaces E,, are separable pre-Hilbert spaces and E is the 

projective limit of Ev, (Schaefer [14], p. 102). 

THEOREM 2.1. I[ E is a real nuclear l.c.s., then one has algebraically and 

topologically 

~,b(E) = inductive limit of ~N~(Ev), 

when V ranges over a base of O-neighbourhoods in E such that Ev is a separable 

pre-Hilbert space. 

Now let E be a real b.v.s, and let ~ ( E )  be the set of all bounded closed 

convex balanced subsets of E. We recall that if E is a real nuclear b.v.s., then 
there is a bornologicaI representation E =inductive limit of Ea, where 
B E ~ ( E )  and the spaces EB are separable Hilbert spaces (Hogbe-Nlend [12]). 
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I f  E is a real nuclear b.v.s., then algebraically and topologically 

( E ) = projective limit of g'Nb~(EB), 

where B ~ ~ ( E )  are such that the spaces EB are separable Hilbert spaces and E is 

the inductive limit of EB. 

For the proofs of these theorems we use the following lemmas: 

LEMMA 2.3. I f  E~ and E2 are two real normed spaces such that E'~ has the a.p., 

with a nuclear linear mapping i from El into E2 and if f is in ~b (E2), then f o i is in 

~gN~(E~). Moreover, the mapping 

is continuous. 

PROOF. 

with 

~h : ~b(E2)--~ ~'Nb(E,) 

f --~ f oi 

Since i is a nuclear map, for every x E E~, 

i(x) = "(x )y , ,  
n=l  

IIx.ll ;=l,' < Ily.ll .=l,< 
n=l  

for each n = 1, 2 , . . . .  Hence for n in N, 

(fo i)~")(x)h,. . ,  h, = ~ Aq, �9 �9 �9 Aqx'q,(h,) '"  Xq.(h,)fr ' ' .  yq. 
qk 

and 

(1) d " ( f  o i ) (x )  = ~ Aq,...  Aq.f~"'(ix)yq, . . .  yq, Xq'~ ~ . . -  (~Xq . 
qk 

Since Eq~Aq, - .Zq .= (E ,=o l~ t , ] ) "< l ,  and f E ~ b ( E 2 ) ,  we have that 

d " ( f o  i ) (x )  E ~N("E). Furthermore,  the image through d " ( fo  i) of a bounded 

subset in E is a bounded set in ~N("E), because f E g'b(E 0 and II 1. Now, 

we must prove that the map 

d " ( f  o i) : E, ~ ~ ( " E , )  

is ditterentiable. Since 

(fo i)~n'(x + h)  = ~ Aq , ' "  Aq.f'")fi(x + h))yq, �9 �9 �9 yqxt~l x . . .  x Xq. 
qk 
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and 

f(")(ix + ih ) = f(")(ix ) + f<"+~)(ix )ih + r,x (ih ), 

where r,x (ih) is a remainder,  we have that 

d" ( fo  i)(x + h ) -  d" ( fo  i)(x)  = ~, hql . . ,  hq,ff"+l)(ix)ihyq, ' ' '  yqx'q~ ( ~ . .  . (~ x'q, 
qk 

+ ~ aq~ �9 �9 - aqr,= ( ih)yq, . . .  yqx'q~ ( ~ . . .  ~ x'q. 
qk 

The first term of the above sum, considered as a function of h, is linear bounded. 

For the second term, we have 

r,x (ih ) E ~F{fr +2)(ix) + ith (ih )2}o__<,__<1, 

where the closed convex balanced hull F is taken in the Banach space L"  (E 0. 

(See Colombeau [4 ] . )Then  this term is contained in cte.([lh IIE02.r,,(B',|176 
where B~ is the closed unit ball in E'~. 

From Lemma 1.1, this proves the differentiability of the map d~(fo  i) from E~ 

into ~N("EI). Then f o i is in gNb(E0. 

Since gb(E 0 and ~Nb(E1) are metrizable spaces, (1) gives also that the 

mapping 

gb(E2) * ,  gNb(E,) 

f > f ~  

is continuous. �9 

REMARK. When we consider complex valued functions, we assume that all 

Nachbin algebras (conditions 5.2.4 in Colombeau [4]) in the following results are 

invariant under complex conjugation. 

LEVaVIA 2.4 (Approximation). Let E1 and E2 be two real normed spaces such 

that EI  has the a.p., with a nuclear mapping i from E1 into E:, that is, 

i(x)= a.x'(x)y., 
n = l  

with 

n = l  
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where x ', G B ~, the unit ball of E ~, y, E B2, the unit ball of E2 (n = 1, 2 , . .  �9 ), and 

x E E l .  

For r in N, let 

i , ( x ) =  2 A,x',(x)y,, 
r t = l  

for x in E~, where A,, x" and y, are as above in the representation of i. 

I f  Y is a Nachbin subalgebra of ~b(Ez), if ~ is a O-neighbourhood in ~Nb(E~) 

and if f is an element of ~b(E2), then for r large enough, there is an element qJ in Y, 

such that f o i - q, o i, is in ~V. 

PROOF. We denote  by BI, B~ and B2 the closed unit ball in El,  E(  and E2 

respectively. Let 

o//- = {q0 (~ ~Nb(E1) such that q~(")(x) E )((UFtl(B'| if 0 =< n =< m and x E/xB1}, 

for some m E N, /z and u > 0, be a 0-neighbourhood in ~Nb(E~). 

For r in N, let us denote by E2., the vector subspace of E2 spanned by the 

vectors y l , ' "  ", y~. We first prove that for r large enough, we have 

(I) foi-foi, E�89 

Like in Lemma 2.3, for n in N, 

and 

(1:o i)c")(x) = ~ Aq, . . .  Aq.f'"'(ix)yq~ . . .  yqXIql X ' ' "  X X;. 
qk 

( [ o  i , ) ' ">(x  ) = xql  " " )y l " . . y .x;1 •  • x ; , .  
q,<=r 

In the difference (]co i ) , . ) ( x ) - ( f o  i,)~.)(x ) there are two types of terms: 

(I) A finite number of terms (with q, _-< r): 

�9 �9 •  • x ; .  
qt ~ �9 

Since i, converges uniformly to i on IxB1, if r ~ ,  i, (/zB1)C/xB2 and f~") is 

uniformly continuous on /zB2, we have that 

I(f~")(ix)-f~")(i,x))yq,, �9 �9 yq. I ~  0, when r ~ ~ and x E gB,  (0 =< n =< m). 

(II) The infinite sum: 

Aq,'" AqJ~")(ix)yq, ... yq x'q~ x... x xq. 
qk 
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with at least one  of the q,'s larger than r. 

Le t  

with at least one  of the q,'s larger than r. Then  dr---) 0 when r---) oo. 

Now, since {f(")(y)}y~,,~ is a bounded  subset of L("E2)  and i ( /zBOC/zB2,  

yq, E B2, x ~ E  B~, we have (1) f rom (I) and (II), for  r large enough.  

Now we are going to prove  that  for  any fixed given r large enough we have 

(2) 3~, in Y, such that  f o i, - ~b o i, E �89176 

We set f, = f /E2. ,  and then f o ir = f, o i,. 

In ~(E2,,), let us apply Nachbin 's  approximat ion  theorem:  given e > 0, there  

is ~ in Y/E2. , ,  such that  for  every  x in /zB2 fq E2,,, 0 =< n =< m, then 

(3) II d-f,(x)- d-~ (x)ll~(~ ~. 

If ~, E El ,  1 _--< j =< n, we have 

if, o i, )(~ )~ ,  . . . ~ .  - ( ,p,  o i, ) ( .~(x ) ~  . . . ~, 

= f ~ " ) ( i , x ) i ~ " "  i,~,, - q)(")(i ,x)i ,~a'" i,l~,,. 

Since in finite dimension the nuclear  norm on ~("E2.~) is equivalent  to the 

usual norm,  (3) implies that  

f~")(i,x ) -  ~o(/')(i,x ) E f ((e  r,,(U;| 

if r is large enough  and B ;  is the closed unit ball of (E2.,)'. 

The re fo re  we may write 

f~") ( i , x ) -q~") ( i , x )  = e 2 h q T ~ x . . .  • Tq 
q=l  

with Eq=~[hq[<=l and T~ is in B~. 

Now, if ~ is in El ,  1 _-< j _-< n, it follows that  

(f, o i,)(")(x )~l . . . ~. - (q~, o i,)(")(x)~:l �9 �9 �9 ~, 

= e ~ hq(T~qX ' ' '  x T : ) ( i g , " "  ir~,,) 
q 

and thus 

(f ,  o i , ) '")(x  ) -  (,p~ o i , ) (n)(x ) = e Y ,  ;tq ( r ~ o  i, •  • T : o  i , ) ,  
q 
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with T~, o i, in B ;, 1 =</" =<.n. 

Therefore  

(f, o i, )~")(x ) - ( ~  o i, )'"~(x ) E ~ (e F,.(B ;| 

and Ibis is true for every x in /zB~ and 0 ~ n ~ m. 

Hence 

fo i , -~#~oi ,  isin~_~, if e = v / 2  

(i.e., for r large enough). 

Then we have (2) with $ o i, = q~, o i,. From (1) and (2), f o i - ~b oir is in 7/'. �9 

As an immediate corollary of the above two lemmas we obtain: 

LEMMA 2.5. Let E~ and E2 be two real normed spaces such that EI has the 

a.p., with a linear nuclear mapping i from E, into E~, then g f is in gb(E2), f o i is in 
gNu(E,) and the mapping 

f ~ f o i  
is continuous. 

PROOF. From Lemma 2.3, it suffices to prove that f o i may be approximated 

in gNb(E~) by finite type continuous polynomials on Et. This follows from 

Lemma 2.4, if we take Y as the set of the continuous homogeneous polynomials 

on E2. The continuity of 0 follows from Lemma 2.3. �9 

PROOF OF THEOREM 2.1. If f is in Sub(E), there are a 0-neighbourhood Vz in 

E such that Ev. is a separable pre-Hilbert space and f in g'b(Ev~) such that 

f 
Since E is a nuclear 1.c.s., there is a 0-neighbourhood V, in E such that the 

canonical map i:E~,--+Ev, is a nuclear map. From Lemma 2.5, f o i  is in 

gNb~(Ev,) and hence f is in the inductive limit of g~br 
Conversely, if f /Ev  is in g'Nb~(E,,), for some 0-neighbourhood V in E, such 

that Ev is a pre-Hilbert space, then f is in g~b(E), trivially. Hence the algebraic 

equality. 
The topological equality follows also by Lemma 2.5. �9 

REMARK 1. This result is the C~-analogue of theorem 3.9 in 

Colombeau-Matos  [8] for holomorphic functions. 

REMARK 2. Note that if E is a DFN-space, g ( E )  = ~'~b(E) algebraically and 

topologically, so all structures coincide in this case. (See Colombeau-Mujica [9].) 
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PROOF OF THEOREM 2.2. Let B~ be in ~3(E) such that Es, is a separable 

Hilbert space. Since E is a nuclear b.v.s., there is B2 in ~ ( E ) ,  B1 C B2 such that 

the inclusion mapping il : EB,---> EB2 is nuclear. Also there is B3 in ~3 (E), B2 C B3, 

such that the inclusion mapping i2 : EB2---> EB3 is nuclear. Hence mB2 is relatively 

compact in EB3, for every m ~ N. 

Thus if f is in ~(E) ,  f/EB2 = (f/EB,) ~ i2 is in ~b(E~). 

By Lemma 2.5, f/EB, = ( f /E~)o i~ is in ~Nbr This implies that f is in the 

projective limit of ~'Nbc(EB). 

From the trivial inclusion: projective limit of ~Nb~(EB)C ~ (E)  and Lemma 

2.5, we have the algebraic and topological equality. �9 

REMARK. This result is the C~-analogue of theorem 3.6 in Colombeau-Matos 

[8], for holomorphic functions. 

III. Density results 

THEOREM 3.1. Let E be a real nuclear l.c.s, and Y be a subalgebra of ~ub(E) 

such that there is a base (V,), of convex balanced pre-Hilbertian O- 

neighbourhoods in E satisfying: 

(1) For every i, 

~.v = {f @ ~b(Ev,) such that f o sv, @ Y} 

is a Nachbin subalgebra of ~b(Ev,). 
(2) Given V2 in (V,),, there is V1 in (V,), such that the canonical mapping 

i : Ev~--* Ev. is nuclear, i.e., 

i(x) = ~ ~,.x'o(x)y~ 
n = l  

with E+~=I IA. I<= 1, x'. in B'~, the closed unit ball in E r y. in B2, the closed uni 

ball in Ev2 (n = 1, 2 , . .  �9 ), and x in Ev,. 

If  we write for r E N 

i ,(x) = ~ A.x;(x)y.,  
n = l  

with A., x '., y. as above and x in Ev,, we assume furthermore that for r large 

enough, the set 

is contained in y v,. 

Then Y is dense in ~ub(E). 

{} co ir, for f E Y v2} 
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COROLLARY 3.2. If  E is a real nuclear l.c.s., then ~r (E)  (the finite type 

continuous polynomials in E)  is dense in ~ub(E). 

COROLLARY 3.3. If  E is a real nuclear l.c.s., then the set 

is dense in ~ub(E). 

Let E = inductive limit of EB, B E N(E) ,  be a real bornological vector space 

separated by its dual E*. We recall that a subset f~ of E is said to be ~- E-open, if 

for all B in ~ ( E ) ,  f~ C'I EB is an open subset of EB. 

THEOREM 3.4. Let E be a real nuclear b.v.s, and let 3- be a Hausdorff locally 

convex topology on E for which any bounded subset of E is ~--bounded. Let f~ be a 

z E-open subset. A subalgebra A in ~g(12) is dense in ~(12) if and only if the 

following conditions are satisfied: 

(a) A is a Nachbin subalgebra ; 

(b) for every B in ~ ( E )  such that EB is a separable Hilbert space, every u in 

(EB)' @ (EB ), every open subset to C 12 fq EB, with u(to ) C i), and every g in A,  the 

composition mapping go(u/ to)  is in the closure of A/ to  in ~(to). 

REMARK. The above theorem improves theorem 5.2.1 of Colombeau [4]. 

PROOF OF THEOREM 3.1. Let f be in ~ub(E) and o//. be a 0-neighbourhood in 

~ob(E). We desire to prove that there is ~b in Y such that f - ~ b  ~ ~. By 

definition of ~ub(E), there are a 0-neighbourhood V2 in E and a function f in 

~b(Ev~) such that f = f o Sv2. Since E is a nuclear 1.c.s., there is a 0-neighbourhood 

VI in E, such that the linear canonical map i : Ev1 --~ Ev~ is nuclear. By Theorem 

2.1, there is a 0-neighbourhood ~ in ~Nb~(Evl) such that if q~ is in ~F~, then q~ o Sv~ 

is in ~. 

Now, it suffices to show that there is ~ in ~b(E~,) such that ~bl - f o  i E ~F~ and 
~b~ o Sv~ is in Y. 

By Lemma 2.4 and (1) of the hypothesis, there is ~ in 12 ~ such that f o i - ~ o i, 

is in 7r~, for r large enough. Take t~ = ~ o i, and then ~b~ o Sv~ = (~ o it) o Sv, is in Y, 

by (2) of the hypothesis. �9 

PROOF OF THEOREM 3.4. The proof of the sufficiency in this theorem is in the 

proof of theorem 5.2.1 of Colombeau [4]. 

Now, let A in ~(f~) be a dense subalgebra. It is classical that A is necessarily a 

Nachbin subalgebra. Next, let u, B and to be as in condition (b) of the theorem 

and let g in A be given. 
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Since EB is a Hilbert space, (EB)' has the bounded approximation property. 
then by Aron-Prolla [3], we have that ~r(EB)/to is dense in *(to) and so g o u/a 
belongs to the closure of ~r(EB)/~o in ~(to). 

Since the restriction mapping: 

r : (E, J)'---> (E~)',o 

has dense range (see Colombeau [4] 5.1.6), then g o u/to belongs to the closure ol 
~r(E,J-)/to in ~(to). 

On the other hand, by the density of A, every element of ~I (E, ~r)/[~ belongs 

to the closure of A in ~(~). A fortiori every element of ~r(E, J-)/to belongs tc 
the closure of A/to in ~ (to), which shows that A satisfies the condition (b). 

IV. A version of the Paley-Wiener-Schwartz theorem 

DEFINITION 4.1. Let E be a real nuclear l.c.s. The Fourier transform ~ frolr 

* 'b(E) into ~s (E~:) is defined by 

(~I)(~) =/(e'~), 

if ~ ~ EL, if I is in ~'b(E), where EL denotes the complexification of the stron~ 

dual E '  of E and ~s (EL) denotes the set of the S-holomorphic functions on EL. 
~= is injective from Corollary 3.3. 

DEFINITION 4.2. Let E be a real nuclear b.v.s. The Fourier transform ~ frorr 
~ ' (E)  into ~ ( E * )  is defined by 

(~l)(~) = / ( e ' 0 ,  

if ~:EE*c and l is in ~'(E). We recall that E* is endowed with its natura 
topology and ~ ( E * )  denotes the set of the holomorphic functions in E~. 

,~ is injective from theorem 5.2.6 in Colombeau [4]. 

Let E be a real nuclear b.v.s., E = inductive limit of EB, such that B ~ ~ ( E  

and EB is a separable Hilbert space. Let us equip ~ ' (E)  with its equicontinuou: 

bornology and its strong topology. We have by Theorem 2.2 that 

(1) ~ (E)  = projective limit of ~N~c(E~). 

Now, since the restriction map 

~(E)  > ~Nbc(EB) 

~0 ' ~olEB 
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for each B in ~ ( E )  has a dense range (it follows by the fact that the restriction 

map E*---~ (EB)' has a dense range, when EB is a Hilbert space (see Colombeau 

[4] 7.2.3)), and if Esl C Era, the restriction map from ~'Nbc(E~) into ~'Nbc(E~,) has 

a dense range, hence its transpose from ~bc(Eo,) into ~bc(E~) is injective. Then 

algebraically one has, from (1), that 

~"(E) = inductive limit of ~b~(Es), 

when B is in ~ ( E )  and EB is a separable Hilbert space (and the equicontinuous 

subsets of ~ '(E) are the subsets contained and equicontinuous in some 

Thus, since ~ is injective, we have 

~ ' ( E )  = inductive limit of . ~ ( E B )  

when B ~ @(E) is such that EB is a separable Hilbert space. Now, by Abuabara 

[1], ~6b~(EB) = Aoq((E/0c) is the vector space of all f in ~((E~)c), such that: 

(1) there are constants c > 0, m > 0 and v E N, such that 

c(1 + II ll ) exp(m Iltm 

for every s c ~ (Ea)~, where Im ~ denotes the imaginary part of ~:. 

(2) The family (~,), in Y' (where Y is the vector subspace of ~Nbr 

generated by all the mappings of the form e '~ : EB ~ C where r E E~), defined 

by 

! l 

g = ~  a,e% ~ Y---~ ~:~ (g) = ~ a,f(~,oP~) 
J =1  t = 1  

is equicontinuous. (P, : EB -~ Ea are the projections on the first n vectors of a 

basis of Ea.) 

Then 

~ ' ( E )  = inductive limit of Aeq((E~)c). 

This remark gives the Paley-Wiener-Schwartz theorem proved in 

Ansemil-Colombeau [2] with another method. 

Now, let E be a real nuclear l.c.s, and let E '  be the dual of E with its 

equicontinuous bornology. 

DEFINITION 4.3. We denote by M the vector subspace of ~s (Eb) made of the 

functions f such that, for every convex balanced 0-neighbourhood V in E, such 

that Ev is a separable pre-Hilbert space, 
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(1) If/(Eb)c(X)[ <-_ c(1 +ll x [[~)~ exp(m HImx I[e) for every x in (Eb)c and 

some c > 0, v, m > 0 (we recall that (Eb)c = (Ev)~ and that I7 denotes the polar 

set of V). 

(2) The sequence (~:.). in Yb (where YbC ~b(Ev) is the subspace spanned by 

the functions of the form e '~, q~ E (Ev)'), defined by 

l 1 

/=1 /=1 

(where P~ : Ev ---> Ev are the projections on the first n vectors of a basis of Ev), 
is equicontinuous. 

We remark that from (1) of the latter definition, M is contained in Exps (E~) 

(see definition 6.4 in Colombeau-Matos [7]). 

This space M is equipped with its bornology naturally derived from (1) and (2), 

that is, a family (f,),~ is bounded iff for every V in (1) the constants c, v, m are 

uniform in i E I and in (2) the family (~.,),., is equicontinuous. 

Let us equip the space ~u'b(E) with its equicontinuous bornology. 

THEOREM 4.4. The Fourier transform ,~ is a bornological isomorphism between 
~'~b(E) and M. 

PROOF. Let V be a convex balanced 0-neighbourhood in E such that Ev is a 

separable pre-Hilbert space and let us denote by sv :E- -~Ev  the canonical 

surjective map. Let 'Sv :(Ev)~-->E~ be its transpose ('Sv is injective). 

We have the map: 

and its transpose 'Iv. 
f , f ~  

t s IE ~, Let T be an element of ~%(E) and ~ be in v~ vjc, that is, ~ = ' sv ( /~ )=  

E ' /~ o Sv for some /~ in ( v)c. Thus 

'Iv(T)(l~ ) = tIv(T)(e'~') =- (T o lv)(e '~' ) = T(e '(~'~ 

= T(e'*)= ~'T(~), 

where ^ denotes the usual Fourier transform in ~bc(Ev). 
Hence ~T/tsv (Ev)~ = / v ~ )  belongs to Aeq((E b)c), by Abuabara [1]. Since it 

holds for every V, ~ T  E M. 
Conversely, let U be in M. Given a 0-neighbourhood V in E, such that Ev is 

separable pre-Hilbert space, U/((E)b)c belongs to A'-q(((E)b)c). Thus U o,sv i: 
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in Aoq((Ev)~). By Abuabara [1], there is an element T~ in ~ ( E ~ ) ,  such that 
A 
Tv = (U~ Hence Tv(e '~) = U('sv(tZ)), for every/x in (Ev)~. 

If V, C V2 are two 0-neighbourhoods in E, 

tsv2(E (~2)c C 'Sv~(E ~)c 

and we have a restriction mapping 

r:~g~b~(Ev~) ' ~Nbc(EVl), 

qO ~ r~/Evl. 

T~(q~) = Tv~(r(qQ), for every ~ in ~b~(Ev~), since 

Tv~(e '~) = U('sv~(~)), 

and 

Tv,(e "'~ = U('sv, o r(~))= U('sv~(O) 

and since {e '~, ~ E (Ev)~} is dense in ~N~(Ev~) (see Abuabara [1]). 

Now we define T from ~ub(E) into C by T ( f ) =  T~([v), if f =fvosv,  with 

fv ~ ~N~(Ev). Then ~ T  = U and we have the algebraic equality between 

~(~ 'b (E))  and ~/. 

We remark that the Fourier transform from ~fs onto Aeq((Ev)~) is a 

bounded mapping. This follows using Abuabara's proof: 

Let {f~},~, be a bounded subset of ~Lbr Then there are c > 0 ,  m, v E N  
such that 

If~ (g)l -< c .  sup{l] d~g(x)llN, k _-< u, llx PI--< m}, 

for every a E L Now if ~ = q~ + i~O is in (Ev)~, then for k -< u, 

Therefore, 

and 

d k (e'e) (x) = (i)ke'~(x) �9 ~:k. 

sup{ll d k ( e " )  (x)l[N, k =< u, 1[ x II ~ rn } _--- (1 + II Ir)~e ,.fj,m,ji 

If~ (OI = If~ (e")l--< c(1 + 11 ~'llye m'l'm'jl. 

The equicontinuity of the family (~:,,~),.~ defined in (2) in the definition of 

Aoq((E~)c) follows from the equicontinuity of ( f , )~ i .  Then {/~}~EI is a bounded 

subset of Aeq((E~)c). 
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Since ~g~(Ev) and Aeq((E~,)c) are complete b.v.s, and ~g~(Ev) has a 
countable basis, the closed graph theorem (Hogbe-Nlend [12], prop. 2, p. 44) 

gives that this Fourier transform is a bornological isomorphism. 

The bornological isomorphism in Theorem 4.4 follows from this. �9 
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