STRUCTURE OF SPACES OF C^{*}-FUNCTIONS ON NUCLEAR SPACES

BY

J. F. COLOMBEAU AND O. T. W. PAQUES*

ABSTRACT

Let E be a real nuclear locally convex space; we prove that the space $\mathscr{E}_{\mu\nu}(E)$, of all C^* -functions of uniform bounded type on E , coincides with the inductive limit of the spaces $\mathcal{E}_{Nbc}(E_v)$ (introduced by Nachbin-Dineen), when V ranges over a basis of convex balanced 0-neighbourhoods in E . Let E be a real nuclear bornological vector space; we prove that the space $\mathscr{E}(E)$ of all C^{*}-functions on E coincides with the projective limit of the spaces $\mathscr{E}_{\text{Npc}}(E_B)$, when B is a closed convex balanced bounded subset of E. As a consequence we obtain some density results and a version of the Paley-Wiener-Schwartz theorem.

Introduction

Recent clarifications of differential calculus in locally convex spaces in Colombeau [4] and new applications of the spaces of C^* -functions on nuclear spaces in Colombeau [5], [6], motivate a deeper study of these spaces of C^* -functions. The main spaces of C^* -functions (due to their mathematical properties and their relevance in applications) are the space $\mathscr{E}(E)$ of all C^* -functions over a real nuclear bornological vector space E and the space $\mathscr{E}_{\text{ub}}(E)$ of all C^{*}-functions of uniform bounded type over a real nuclear locally convex space E (this space $\mathscr{E}_{ub}(E)$ was introduced more recently in Colombeau-Mujica [9], Colombeau-Paques [10], Colombeau [4]).

In this paper we prove that these two spaces $\mathscr{E}(E)$ and $\mathscr{E}_{ub}(E)$ may be considered respectively as projective and inductive limits of spaces $\mathscr{E}_{Nbc}(H)$, which are "very good" spaces of C^* -functions on separable real Hilbert spaces H introduced in Nachbin-Dineen [13]. In the complex case, i.e. for holomorphic functions over *E,* similar results had previously been proved in Colombeau-Matos [7], [8], but the proofs in the real case are quite different and

^{*} Research done during the stay of this author at the University of Bordeaux (France) in the academic year 1980-1981.

Received May 20, 1982

more difficult. These results bring important clarifications of these concepts and some consequences (density results and Paley-Wiener-Schwartz theorems) are explained at the end of the paper.

I. Recalls, notations and terminology

We use classical notations and terminology (see Colombeau [4], Ansemil-Colombeau [2], Abuabara [1], Colombeau-Matos [7], [8], Colombeau-Mujica [9], Gupta [11] and Nachbin-Dineen [13]). If E is a real locally convex space (l.c.s., for short) we recall that $\mathcal{E}_{ub}(E)$ is the inductive limit, when V ranges over a base of convex balanced 0-neighbourhoods of E , of the spaces $\mathcal{E}_b(E_v)$ (the space of all infinitely differentiable functions on E_v which are bounded, with all their derivatives on each bounded subset of E_v), i.e. an element f of $\mathscr{E}_{\text{ub}}(E)$ may be considered as a function on E that may be factorized as $f = \hat{f} \circ s_v$, for some V, where $s_v : E \to E_v$ denotes the canonical map $(E_V = E/p_V^{-1}(0)$ normed by the gauge p_V of V) and with \tilde{f} in $\mathcal{E}_b(E_V)$. We endow $\mathscr{E}_{b}(E_{v})$ with the topology of uniform convergence of the functions and all their derivatives on each bounded subset of E_v and $\mathscr{E}_{ub}(E)$ with the locally convex inductive limit topology of these spaces.

Now we recall some definitions in Nachbin-Dineen [13]. Let E be a normed space such that its strong dual E' has the approximation property (a.p. for short). We consider the completed topological tensor product $E' \pi^{\hat{\otimes}^n}$ of E', n times and $L("E) = L("E; \mathbb{C})$ the space of the *n*-linear continuous functions on *E*, with its usual norm. We have a continuous injection:

$$
E'\pi^{\otimes n} \xrightarrow{\lambda} L("E),
$$

$$
(\varphi_1 \otimes \cdots \otimes \varphi_n) \mapsto \varphi_1 \times \cdots \times \varphi_n,
$$

where

$$
(\varphi_1 \times \cdots \times \varphi_n)(x_1, \cdots, x_n) = \varphi_1(x_1) \cdots \varphi_n(x_n),
$$

which admits an injective continuation:

$$
E'\pi^{\hat{\otimes}n}\stackrel{\bar{x}}{\longrightarrow}L({}^nE).
$$

We define $\mathcal{P}_N("E) = \mathcal{P}_N("E; C)$ (the nuclear *n*-homogeneous polynomials) as the subspace of $E' \pi^{\hat{\otimes} n}$ made of those elements which are symmetric functions when considered via $\tilde{\chi}$ in $L("E)$. $\mathcal{P}_N("E)$ is equipped with the norm induced by $E'\pi^{\otimes n}$ that is called the nuclear norm $\|\cdot\|_{N}$.

For the convenience of the sequel we are going to slightly reformulate this nuclear norm. Let P be a nuclear *n*-homogeneous polynomial. Then

(1)
$$
P = \sum_{j=0}^{\infty} \phi_{1_j} \otimes \cdots \otimes \phi_{n_j}, \quad \text{where } \phi_{i_j} \in E' \text{ (Schaeder [14], p. 94),}
$$

$$
||P|| = \inf_{\substack{\text{over all the}\\ \text{representations of}\\P \text{ of the type (1)}}} \left\{ \sum_{j=0}^{\infty} ||\phi_{1_j}||_{E'} \cdots ||\phi_{n_j}||_{E'} \right\},
$$

where

$$
\|\phi_{i_j}\|_{E'} = \sup\{|\phi_{i_j}(x)|; \|x\| \le 1\}
$$
 (Schaefer [14], p. 93).

We have the following:

LEMMA 1.1. $||P||_N = ||P||_{\Gamma_L B^{\otimes n}}$, where $|| \cdot ||_{\Gamma_L B^{\otimes n}}$ is the gauge of $\Gamma_L B^{\prime \otimes n}$ (B' is *the closed unit ball of E').*

PROOF. First we recall that

$$
\Gamma_{t_1} B'^{\otimes n} = \left\{ \sum_{i=0}^{\infty} \lambda_i T_{1_i} \otimes \cdots \otimes T_{n_i}, \text{ where } \sum_{i=0}^{\infty} |\lambda_i| \leq 1 \text{ and } T_{t_j} \in B' \right\}.
$$

If $||P||_{\mathbb{F}_{i,B} \otimes \mathbb{R}} \leq \mu$, then for every $\varepsilon > 0$, we may write

$$
P=(\mu+\varepsilon)\sum_{i=0}^{\infty}\lambda_iT_{1_i}\otimes\cdots\otimes T_{n_i},
$$

where

$$
\sum_{i=0}^{\infty} |\lambda_i| \leq 1, \qquad T_{i_j} \in B',
$$

hence $||P||_N \leq \mu + \varepsilon$, and then

$$
||P||_{N} \leq ||P||_{\Gamma_{t_1}B^{\sqrt{\otimes n}}}.
$$

Now, if $||P||_N \leq \mu$, then for every $\varepsilon > 0$, $||P||_N \leq \mu + \varepsilon$, hence we may write

$$
P=\sum_{j=0}^{\infty}\phi_{1_j}\otimes\cdots\otimes\phi_{n_j},\quad\text{where}\,\,\sum_{j=0}^{\infty}\|\phi_{1_j}\|_{E'}\cdots\|\phi_{n_j}\|_{E'}\leq\mu+\varepsilon.
$$

If $\mu_{\iota} = ||\phi_{1,\iota}||_{E'} \cdots ||\phi_{n,\iota}||_{E'},$ then $\sum_{i=0}^{\infty} | \mu_{\iota} | \leq \mu + \varepsilon$ and

$$
P=\sum_{i=0}^{\infty}\mu_{i}\frac{\phi_{1}}{\|\phi_{1_{i}}\|_{E'}}\otimes\cdots\otimes\frac{\phi_{n_{i}}}{\|\phi_{n_{i}}\|_{E'}}
$$

hence $||P||_{\Gamma_{t,B}\otimes\mathbb{R}} \leq \mu + \varepsilon$, and we have $||P||_{\Gamma_{t,B}\otimes\mathbb{R}} \leq ||P||_{\mathbb{N}}$.

Let E be a real normed space such that E' has the a.p. We denote by $\mathcal{E}_{Nb}(E)$ (the infinitely nuclearly differentiable functions of bounded type on E) the subspace of all infinitely differentiable functions $f : E \to \mathbb{C}$, such that

(a) $\hat{d}^n f$ maps E into $\mathcal{P}_N(TE)$, $\forall n \in \mathbb{N}$,

(b) $\hat{d}^n f : E \to \mathcal{P}_N(TE)$ is differentiable and bounded on bounded subsets of E, $\forall n \in \mathbb{N}$.

The topology of $\mathscr{E}_{Nb}(E)$ is the one generated by the following countable system of seminorms:

$$
q_{m,n}(f) = \sup\{\|\hat{d}^{\,\prime\prime}(x)\|_{N}; 0 \leq i \leq n, \|x\| \leq m\}, \qquad n, m = 0, 1, \cdots,
$$

for every f in $\mathcal{E}_{\text{Nb}}(E)$.

We denote by $\mathcal{E}_{Nbc}(E)$ (the infinitely differentiable functions of boundedcompact type on E) the closure in $\mathscr{E}_{Nb}(E)$ of the vector space generated by all the functions of the form $\phi^{\otimes n}$, $\phi \in E'$, $n \in \mathbb{N}$ (i.e., the continuous polynomials of finite type on E).

A counterexample of Abuabara [1] shows that $\mathcal{E}_{Nbc}(E) \neq \mathcal{E}_{Nbc}(E)$, in general.

If *E is a real bornological vector space (b.v.s. for short) separated by its dual* E^* , we denote by $\mathcal{E}(E)$ the space of all infinitely differentiable functions on E, endowed with the topology of uniform convergence of the functions and their derivatives on the strictly compact subsets of E .

II. Structures of the spaces $\mathcal{E}_{ub}(E)$ and $\mathcal{E}(E)$

We recall that if E is a real nuclear l.c.s., there is a base of 0-neighbourhoods (V_i) in E such that the spaces E_{V_i} are separable pre-Hilbert spaces and E is the projective limit of E_v (Schaefer [14], p. 102).

THEOREM 2.1. If E is a real nuclear l.c.s., then one has algebraically and *topologically*

$$
\mathscr{E}_{\text{ub}}(E) = \text{inductive limit of } \mathscr{E}_{\text{Nbc}}(E_V),
$$

when V ranges over a base of O-neighbourhoods in E such that Ev is a separable pre-Hilbert space.

Now let E be a real b.v.s. and let $\mathcal{B}(E)$ be the set of all bounded closed convex balanced subsets of E . We recall that if E is a real nuclear b.v.s., then there is a bornological representation $E =$ inductive limit of E_B , where $B \in \mathcal{B}(E)$ and the spaces E_B are separable Hilbert spaces (Hogbe-Nlend [12]).

THEOREM 2.2. *If E is a real nuclear b.v.s., then algebraically and topologically*

$$
\mathscr{E}(E) = \text{projective limit of } \mathscr{E}_{\text{Nbc}}(E_B),
$$

where $B \in \mathcal{B}(E)$ are such that the spaces E_B are separable Hilbert spaces and E is *the inductive limit of* E_B *.*

For the proofs of these theorems we use the following lemmas:

LEMMA 2.3. *If* E_1 and E_2 are two real normed spaces such that E'_1 has the a.p., *with a nuclear linear mapping i from* E_1 *into* E_2 *and if f is in* $\mathscr{E}_b(E_2)$ *, then f* \circ *i is in* $\mathscr{E}_{N\phi}(E_1)$. Moreover, the mapping

$$
\psi: \mathscr{E}_{\mathfrak{b}}(E_2) \to \mathscr{E}_{\text{Nb}}(E_1)
$$

$$
f \to f \circ i
$$

is continuous.

Proof. Since *i* is a nuclear map, for every $x \in E_1$,

$$
i(x)=\sum_{n=1}^{\infty}\lambda_nx'_n(x)y_n,
$$

with

$$
\sum_{n=1}^{8} |\lambda_n| \leq 1, \quad ||x'_n||_{E_1} \leq 1, \quad ||y_n||_{E_2} \leq 1,
$$

for each $n = 1, 2, \dots$. Hence for n in N,

$$
(f\circ i)^{(n)}(x)h_1\cdots h_n=\sum_{q_k}\lambda_{q_1}\cdots\lambda_{q_n}x'_{q_1}(h_1)\cdots x'_{q_n}(h_n)f^{(n)}(ix)y_{q_1}\cdots y_{q_n}
$$

and

(1)
$$
\hat{d}^n(f \circ i)(x) = \sum_{q_k} \lambda_{q_1} \cdots \lambda_{q_n} f^{(n)}(ix) y_{q_1} \cdots y_{q_n} x'_{q_1} \otimes \cdots \otimes x'_{q_n}.
$$

Since $\Sigma_{q_k} \lambda_{q_1} \cdots \lambda_{q_n} \leq (\Sigma_{i=0}^*|\lambda_i|)^n \leq 1$, and $f \in \mathcal{E}_b(E_2)$, we have that $\hat{d}^{\pi}(f \circ i)(x) \in \mathcal{P}_{N}(E)$. Furthermore, the image through $\hat{d}^{\pi}(f \circ i)$ of a bounded subset in E is a bounded set in $\mathcal{P}_N(T, E)$, because $f \in \mathcal{E}_b(E_2)$ and $||y_{q_i}||_{E_2} \leq 1$. Now, we must prove that the map

$$
\hat{d}^n(f \circ i): E_1 \to \mathcal{P}_N(^nE_1)
$$

is differentiable. Since

$$
(f\circ i)^{(n)}(x+h)=\sum_{q_k}\lambda_{q_1}\cdots\lambda_{q_n}f^{(n)}(i(x+h))y_{q_1}\cdots y_{q_n}x'_{q_1}\times\cdots\times x'_{q_n}
$$

and

$$
f^{(n)}(ix + ih) = f^{(n)}(ix) + f^{(n+1)}(ix)ih + r_{ix}(ih),
$$

where r_{α} *(ih)* is a remainder, we have that

$$
\hat{d}^n(f\circ i)(x+h)-\hat{d}^n(f\circ i)(x)=\sum_{q_k}\lambda_{q_1}\cdots\lambda_{q_n}f^{(n+1)}(ix)ihy_{q_1}\cdots y_{q_n}x'_{q_1}\otimes\cdots\otimes x'_{q_n}+\sum_{q_k}\lambda_{q_1}\cdots\lambda_{q_n}r_{ix}(ih)y_{q_1}\cdots y_{q_n}x'_{q_1}\otimes\cdots\otimes x'_{q_n}.
$$

The first term of the above sum, considered as a function of h , is linear bounded. For the second term, we have

$$
r_{ix}(ih) \in \frac{1}{2} \Gamma \{f^{(n+2)}(ix) + ith(ih)^2\}_{0 \leq i \leq 1},
$$

where the closed convex balanced hull $\overline{\Gamma}$ is taken in the Banach space $L^n(E_2)$. (See Colombeau [4].) Then this term is contained in cte. $(\Vert h \Vert_{E})^2 \cdot \Gamma_h(B_1^{\otimes n})$, where B'_{1} is the closed unit ball in E'_{1} .

From Lemma 1.1, this proves the differentiability of the map $\hat{d}^n(f \circ i)$ from E_1 into $\mathcal{P}_N(^nE_1)$. Then $f \circ i$ is in $\mathcal{E}_{Nb}(E_1)$.

Since $\mathscr{E}_{b}(E_2)$ and $\mathscr{E}_{Nb}(E_1)$ are metrizable spaces, (1) gives also that the mapping

$$
\mathscr{E}_{b}(E_2) \xrightarrow{\psi} \mathscr{E}_{Nb}(E_1)
$$

$$
f \longrightarrow f \circ i
$$

is continuous.

REMARK. When we consider complex valued functions, we assume that all Nachbin algebras (conditions 5.2.4 in Colombeau [4]) in the following results are invariant under complex conjugation.

LEMMA 2.4 (Approximation). Let E_1 and E_2 be two real normed spaces such *that* E'_1 has the a.p., with a nuclear mapping i from E_1 into E_2 , that is,

$$
i(x)=\sum_{n=1}^{\infty}\lambda_nx'_n(x)y_n,
$$

with

$$
\sum_{n=1}^{\infty} |\lambda_n| \leq 1, \qquad \lambda_n \in \mathbf{C},
$$

where $x'_n \in B'_1$, the unit ball of E'_1 , $y_n \in B_2$, the unit ball of E_2 ($n = 1, 2, \dots$), and $x \in E_1$.

For r in N, *let*

$$
i_{n}(x)=\sum_{n=1}^{r}\lambda_{n}x'_{n}(x)y_{n},
$$

for x in E₁, where λ_n , x'_n *and* y_n *are as above in the representation of i.*

If Y is a Nachbin subalgebra of $\mathscr{E}_b(E_2)$, *if* $\mathscr V$ *is a 0-neighbourhood in* $\mathscr{E}_{Nb}(E_1)$ *and if f is an element of* $\mathscr{E}_b(E_2)$, *then for r large enough, there is an element* ψ *in Y, such that* $f \circ i - \psi \circ i$, *is in* \mathcal{V} *.*

PROOF. We denote by B_1 , B'_1 and B_2 the closed unit ball in E_1 , E'_1 and E_2 respectively. Let

$$
\mathcal{V} = \{ \varphi \in \mathscr{E}_{\text{Nb}}(E_1) \text{ such that } \varphi^{(n)}(x) \in \tilde{\chi}(\nu \Gamma_{t_1}(B^{\prime \otimes n})), \text{ if } 0 \leq n \leq m \text{ and } x \in \mu B_1 \},
$$

for some $m \in \mathbb{N}$, μ and $\nu > 0$, be a 0-neighbourhood in $\mathcal{E}_{\text{Nb}}(E_1)$.

For r in N, let us denote by E_{2r} , the vector subspace of E_2 spanned by the vectors y_1, \dots, y_r . We first prove that for r large enough, we have

$$
(1) \t f \circ i - f \circ i, \in \tfrac{1}{2}V.
$$

Like in Lemma 2.3, for n in N,

$$
(f\circ i)^{(n)}(x)=\sum_{q_k}\lambda_{q_1}\cdots\lambda_{q_n}f^{(n)}(ix)y_{q_1}\cdots y_{q_n}x'_{q_1}\times\cdots\times x'_{q_n}
$$

and

$$
(f\circ i_r)^{(n)}(x)=\sum_{q_n\leq r}\lambda_{q_1}\cdots\lambda_{q_n}f^{(n)}(i,x)y_{q_1}\cdots y_{q_n}x'_{q_1}\times\cdots\times x'_{q_n}.
$$

In the difference $(f \circ i)^{(n)}(x) - (f \circ i,)^{(n)}(x)$ there are two types of terms:

(I) A finite number of terms (with $q_i \leq r$):

$$
\sum_{q_n \leq r} \lambda_{q_1} \cdots \lambda_{q_n} (f^{(n)}(ix) - f^{(n)}(ix)) y_{q_1} \cdots y_{q_n} x'_{q_1} \times \cdots \times x'_{q_n}.
$$

Since *i*, converges uniformly to *i* on μB_1 , if $r \rightarrow \infty$, $i_r(\mu B_1) \subset \mu B_2$ and $f^{(n)}$ is uniformly continuous on μB_2 , we have that

$$
|(f^{(n)}(ix)-f^{(n)}(ix))y_{q_1}\cdots y_{q_n}|\rightarrow 0, \text{ when } r\rightarrow\infty \text{ and } x\in \mu B_1 \quad (0\leq n\leq m).
$$

(II) The infinite sum:

$$
\sum_{q_k}\lambda_{q_1}\cdots\lambda_{q_n}f^{(n)}(ix)y_{q_1}\cdots y_{q_n}x'_{q_1}\times\cdots\times x_{q_n}
$$

with at least one of the q_i 's larger than r.

Let

$$
d_r = \sum_{q_k} |\lambda_{q_1}| \cdots |\lambda_{q_n}| = \left(\sum_{q=1}^{\infty} |\lambda_q|\right)^n - \left(\sum_{q=1}^r |\lambda_q|\right)^n
$$

with at least one of the q's larger than r. Then $d_r \rightarrow 0$ when $r \rightarrow \infty$.

Now, since $\{f^{(n)}(y)\}_{y\in\mu B_2}$ is a bounded subset of $L(^{n}E_2)$ and $i(\mu B_1) \subset \mu B_2$, $y_{q_i} \in B_2$, $x'_{q_i} \in B'_1$, we have (1) from (I) and (II), for r large enough.

Now we are going to prove that for any fixed given r large enough we have

(2)
$$
\exists \psi \text{ in } Y \text{, such that } f \circ i_r - \psi \circ i_r \in \frac{1}{2} \mathcal{V}.
$$

We set $f_r = f/E_{2,r}$ and then $f \circ i_r = f_r \circ i_r$.

In $\mathscr{E}(E_{2,r})$, let us apply Nachbin's approximation theorem: given $\varepsilon > 0$, there is φ_{ε} in $Y/E_{2,r}$, such that for every x in $\mu B_2 \cap E_{2,r}$, $0 \le n \le m$, then

(3)
$$
\|\hat{d}^n f_r(x) - \hat{d}^n \varphi_{\varepsilon}(x)\|_{\mathscr{P}({}^n E_{2,r})} \leq \varepsilon.
$$

If $\xi \in E_1$, $1 \leq j \leq n$, we have

$$
(f, \circ i,)^{(n)}(x)\xi_1 \cdots \xi_n - (\varphi_{\varepsilon} \circ i,)^{(n)}(x)\xi_1 \cdots \xi_n
$$

= $f_r^{(n)}(i,x)i_r\xi_1 \cdots i_r\xi_n - \varphi_{\varepsilon}^{(n)}(i,x)i_r\xi_1 \cdots i_r\xi_n.$

Since in finite dimension the nuclear norm on $\mathcal{P}(^nE_{2,r})$ is equivalent to the usual norm, (3) implies that

$$
f_r^{(n)}(i,x)-\varphi_\varepsilon^{(n)}(i,x)\in\tilde\chi(\varepsilon\,\Gamma_{l_1}(B_3^{\prime\otimes n})),
$$

if r is large enough and B'_3 is the closed unit ball of $(E_{2,r})'$.

Therefore we may write

$$
f_r^{(n)}(i,x)-\varphi_\varepsilon^{(n)}(i,x)=\varepsilon\sum_{q=1}^\infty\lambda_qT_q^1\times\cdots\times T_q^n
$$

with $\Sigma_{q=1} |\lambda_q| \leq 1$ and T_q^n is in B'_3 .

Now, if ξ_i is in E_1 , $1 \leq j \leq n$, it follows that

$$
(f, \circ i,)^{(n)}(x)\xi_1 \cdots \xi_n - (\varphi_{\varepsilon} \circ i,)^{(n)}(x)\xi_1 \cdots \xi_n
$$

= $\varepsilon \sum \lambda_i (T^1 \times \cdots \times T^n)(i \xi, \cdots, i \xi)$

$$
= \varepsilon \sum_{q} \lambda_q (T_q^1 \times \cdots \times T_q^n) (i \xi_1 \cdots i \xi_n)
$$

and thus

$$
(f, \circ i,)^{(n)}(x) - (\varphi_{\varepsilon} \circ i,)^{(n)}(x) = \varepsilon \sum_{q} \lambda_{q} (T_{q}^{1} \circ i, \times \cdots \times T_{q}^{n} \circ i,),
$$

with $T'_a \circ i$, in B'_1 , $1 \leq j \leq n$.

Therefore

$$
(f, \circ i,)^{(n)}(x) - (\varphi_{\varepsilon} \circ i,)^{(n)}(x) \in \tilde{\chi}(\varepsilon \Gamma_{t_1}(B_1'^{\otimes n}))
$$

and this is true for every x in μB_i and $0 \le n \le m$.

Hence

$$
f \circ i_r - \varphi_\varepsilon \circ i_r
$$
, is in $\frac{1}{2}\mathcal{V}$, if $\varepsilon = \nu/2$

(i.e., for r large enough).

Then we have (2) with $\psi \circ i = \varphi \circ i$. From (1) and (2), $f \circ i - \psi \circ i$, is in \mathcal{V} . As an immediate corollary of the above two lemmas we obtain:

LEMMA 2.5. Let E_1 and E_2 be two real normed spaces such that E_1' has the *a.p., with a linear nuclear mapping i from* E_1 *into* E_2 *, then if f is in* $\mathscr{E}_b(E_2)$, $f \circ i$ is in $\mathscr{E}_{\text{Nbc}}(E_1)$ and the mapping

$$
\psi : \mathcal{E}_{b}(E_{i}) \to \mathcal{E}_{\text{Nbc}}(E_{i})
$$

$$
f \mapsto f \circ i
$$

is continuous.

PROOF. From Lemma 2.3, it suffices to prove that $f \circ i$ may be approximated in $\mathcal{E}_{Nb}(E_1)$ by finite type continuous polynomials on E_i . This follows from Lemma 2.4, if we take Y as the set of the continuous homogeneous polynomials on E_2 . The continuity of ψ follows from Lemma 2.3.

PROOF OF THEOREM 2.1. If f is in $\mathcal{E}_{ub}(E)$, there are a 0-neighbourhood V_2 in E such that E_{v_2} is a separable pre-Hilbert space and \tilde{f} in $\mathscr{E}_b(E_{v_2})$ such that $f = \tilde{f} \circ s_{V_2}.$

Since E is a nuclear l.c.s., there is a 0-neighbourhood V_i in E such that the canonical map $i: E_{v_1} \to E_{v_2}$ is a nuclear map. From Lemma 2.5, $\tilde{f} \circ i$ is in $\mathscr{E}_{Nbc}(E_V)$ and hence f is in the inductive limit of $\mathscr{E}_{Nbc}(E_V)$.

Conversely, if f/E_V is in $\mathscr{E}_{Nbc}(E_V)$, for some 0-neighbourhood V in E, such that E_v is a pre-Hilbert space, then f is in $\mathscr{E}_{ub}(E)$, trivially. Hence the algebraic equality.

The topological equality follows also by Lemma 2.5.

REMARK 1. This result is the C^* -analogue of theorem 3.9 in Colombeau-Matos [8] for holomorphic functions.

REMARK 2. Note that if E is a DFN-space, $\mathscr{E}(E) = \mathscr{E}_{\text{ub}}(E)$ algebraically and topologically, so all structures coincide in this case. (See Colombeau-Mujica [9].)

PROOF OF THEOREM 2.2. Let B_1 be in $\mathcal{B}(E)$ such that E_B is a separable Hilbert space. Since E is a nuclear b.v.s., there is B_2 in $\mathcal{B}(E)$, $B_1 \subset B_2$ such that the inclusion mapping $i_1 : E_{B_1} \to E_{B_2}$ is nuclear. Also there is B_3 in $\mathcal{B}(E)$, $B_2 \subset B_3$, such that the inclusion mapping $i_2 : E_{B_2} \to E_{B_3}$ is nuclear. Hence mB_2 is relatively compact in E_{B_3} , for every $m \in N$.

Thus if f is in $\mathcal{E}(E)$, $f/E_{B_2} = (f/E_{B_1}) \circ i_2$ is in $\mathcal{E}_b(E_{B_2})$.

By Lemma 2.5, $f/E_{B_1} = (f/E_{B_2}) \circ i_1$ is in $\mathcal{E}_{Nbc}(E_{B_1})$. This implies that f is in the projective limit of $\mathscr{E}_{Nbc}(E_B)$.

From the trivial inclusion: projective limit of $\mathscr{E}_{Nbc}(E_B) \subset \mathscr{E}(E)$ and Lemma 2.5, we have the algebraic and topological equality.

REMARK. This result is the C^* -analogue of theorem 3.6 in Colombeau–Matos [8], for holomorphic functions.

III. Density results

THEOREM 3.1. Let E be a real nuclear l.c.s. and Y be a subalgebra of $\mathcal{E}_{\text{ub}}(E)$ *such that there is a base (V,), of convex balanced pre-Hilbertian Oneighbourhoods in E satisfying:*

(1) *For every i,*

$$
\tilde{Y}^{V_i} = \{ f \in \mathcal{E}_b(E_{V_i}) \text{ such that } f \circ s_{V_i} \in Y \}
$$

is a Nachbin subalgebra of $\mathscr{E}_b(E_v)$.

(2) *Given* V_2 *in* (V_1) *, there is* V_1 *in* (V_1) *, such that the canonical mapping* $i: E_v \rightarrow E_v$, is nuclear, *i.e.*,

$$
i(x)=\sum_{n=1}^{\infty}\lambda_nx'_n(x)y_n,
$$

with $\sum_{n=1}^{+\infty} |\lambda_n| \leq 1$, x'_n in B'_1 , the closed unit ball in E'_{y_1} , y_n in B_2 , the closed uni *ball in* E_{v_2} (*n* = 1, 2, \cdots), and *x* in E_{v_1} .

If we write for $r \in N$

$$
i_r(x)=\sum_{n=1}^r \lambda_n x'_n(x)y_n,
$$

with λ_n , x'_n , y_n as above and x in E_{v_i} , we assume furthermore that for r large *enough, the set*

$$
\{f \circ i_r, \text{ for } f \in \tilde{Y}^{\nu_2}\}
$$

is contained in \tilde{Y}^{V_1} .

Then Y is dense in $\mathscr{E}_{\text{ub}}(E)$.

COROLLARY 3.2. If E is a real nuclear l.c.s., then $\mathcal{P}_f(E)$ (the finite type *continuous polynomials in* E) is dense in $\mathcal{E}_{\text{ub}}(E)$.

COROLLARY 3.3. *If E is a real nuclear l.c.s., then the set*

$$
\left\{\sum_{\text{finite}} c_i e^{i\varphi_i}, \, c_j \in \mathbf{C}, \, \varphi_i \in E'\right\}
$$

is dense in $\mathcal{E}_{\text{ub}}(E)$.

Let $E =$ inductive limit of E_B , $B \in \mathcal{B}(E)$, be a real bornological vector space separated by its dual E^* . We recall that a subset Ω of E is said to be τE -open, if for all B in $\mathcal{B}(E)$, $\Omega \cap E_B$ is an open subset of E_B .

THEOREM 3.4. Let E be a real nuclear b.v.s. and let $\mathcal T$ be a Hausdorff locally *convex topology on E for which any bounded subset of E is* \mathcal{T} *-bounded. Let* Ω *be a* τ *E*-open subset. A subalgebra A in $\mathcal{E}(\Omega)$ is dense in $\mathcal{E}(\Omega)$ if and only if the *following conditions are satisfied:*

(a) *A is a Nachbin subalgebra ;*

(b) for every B in $\mathcal{B}(E)$ such that E_B is a separable Hilbert space, every u in $(E_B)' \otimes (E_B)$, every open subset $\omega \subset \Omega \cap E_B$, with $u(\omega) \subset \Omega$, and every g in A, the *composition mapping g* \circ (*u*/ ω) *is in the closure of A/* ω *in* $\mathscr{E}(\omega)$ *.*

REMARK. The above theorem improves theorem 5.2.1 of Colombeau [4].

PROOF OF THEOREM 3.1. Let f be in $\mathcal{E}_{\text{ub}}(E)$ and $\mathcal V$ be a 0-neighbourhood in $\mathscr{E}_{ub}(E)$. We desire to prove that there is ψ in Y such that $f-\psi \in \mathscr{V}$. By definition of $\mathscr{E}_{ub}(E)$, there are a 0-neighbourhood V_2 in E and a function \tilde{f} in $\mathscr{E}_{b}(E_{V_2})$ such that $f = \tilde{f} \circ s_{V_2}$. Since E is a nuclear l.c.s., there is a 0-neighbourhood V_1 in E, such that the linear canonical map $i: E_{V_1} \rightarrow E_{V_2}$ is nuclear. By Theorem 2.1, there is a 0-neighbourhood \mathcal{V}_1 in $\mathcal{E}_{Nbc}(E_{V_1})$ such that if φ is in \mathcal{V}_1 , then $\varphi \circ s_{V_1}$ is in \mathcal{V} .

Now, it suffices to show that there is ψ_1 in $\mathscr{E}_b(E_V)$ such that $\psi_1 - \tilde{f} \circ i \in \mathscr{V}_1$ and $\psi_1 \circ s_{V_1}$ is in Y.

By Lemma 2.4 and (1) of the hypothesis, there is $\tilde{\psi}$ in \tilde{Y}^{V_2} such that $\tilde{f} \circ i - \tilde{\psi} \circ i$. is in \mathcal{V}_1 , for r large enough. Take $\psi_1 = \tilde{\psi} \circ i$, and then $\psi_1 \circ s_{V_1} = (\tilde{\psi} \circ i) \circ s_{V_1}$ is in Y, by (2) of the hypothesis.

PROOF OF THEOREM 3.4. The proof of the sufficiency in this theorem is in the proof of theorem 5.2.1 of Colombeau [4].

Now, let A in $\mathscr{E}(\Omega)$ be a dense subalgebra. It is classical that A is necessarily a Nachbin subalgebra. Next, let u, B and ω be as in condition (b) of the theorem and let g in A be given.

Since E_B is a Hilbert space, $(E_B)'$ has the bounded approximation property. then by Aron-Prolla [3], we have that $\mathcal{P}_f(E_B)/\omega$ is dense in $\mathcal{E}(\omega)$ and so $g \circ u/\alpha$ belongs to the closure of $\mathcal{P}_f(E_B)/\omega$ in $\mathcal{E}(\omega)$.

Since the restriction mapping:

$$
r:(E,\mathscr{T})'\to (E_{\beta})'_{\tau_0}
$$

has dense range (see Colombeau [4] 5.1.6), then $g \circ u/\omega$ belongs to the closure of $\mathscr{P}_f(E,\mathcal{T})/\omega$ in $\mathscr{E}(\omega)$.

On the other hand, by the density of A, every element of $\mathcal{P}_f (E, \mathcal{T})/\Omega$ belongs to the closure of A in $\mathcal{E}(\Omega)$. A fortiori every element of $\mathcal{P}_f(E, \mathcal{T})/\omega$ belongs to the closure of A/ω in $\mathscr{E}(\omega)$, which shows that A satisfies the condition (b).

IV. A version of the Paley-Wiener-Schwartz theorem

DEFINITION 4.1. Let E be a real nuclear l.c.s. The Fourier transform $\mathcal F$ from $\mathscr{E}_{\text{ub}}(E)$ into $\mathscr{H}_{\text{s}}(E_{\text{c}}')$ is defined by

$$
(\mathscr{F}l)(\xi)=l(e^{\kappa\iota}),
$$

if $\xi \in E'_c$, if *l* is in $\mathcal{E}'_{ab}(E)$, where E'_c denotes the complexification of the stron_i dual E' of E and $\mathcal{H}_s(E_c)$ denotes the set of the S-holomorphic functions on E_c' .

 $\mathscr F$ is injective from Corollary 3.3.

DEFINITION 4.2. Let E be a real nuclear b.v.s. The Fourier transform $\mathcal F$ from $\mathscr{C}'(E)$ into $\mathscr{H}(E_{C}^{*})$ is defined by

$$
(\mathscr{F}l)(\xi)=l(e^{\iota\xi}),
$$

if $\xi \in E_{c}^{*}$ and l is in $\mathscr{C}'(E)$. We recall that E^{*} is endowed with its natura topology and $\mathcal{H}(E_{\rm C}^*)$ denotes the set of the holomorphic functions in $E_{\rm C}^*$.

 $\mathcal F$ is injective from theorem 5.2.6 in Colombeau [4].

Let E be a real nuclear b.v.s., $E =$ inductive limit of E_B , such that $B \in \mathcal{B}(E)$ and E_B is a separable Hilbert space. Let us equip $\mathscr{E}'(E)$ with its equicontinuou: bornology and its strong topology. We have by Theorem 2.2 that

(1)
$$
\mathscr{E}(E) = \text{projective limit of } \mathscr{E}_{\text{Nbc}}(E_B).
$$

Now, since the restriction map

$$
\mathscr{E}(E) \longrightarrow \mathscr{E}_{\text{Nbc}}(E_B)
$$

$$
\varphi \longrightarrow \varphi/E_B
$$

for each B in $\mathcal{B}(E)$ has a dense range (it follows by the fact that the restriction map $E^* \rightarrow (E_B)'$ has a dense range, when E_B is a Hilbert space (see Colombeau [4] 7.2.3)), and if $E_{B_1} \subset E_{B_2}$, the restriction map from $\mathcal{E}_{Nbc}(E_{B_1})$ into $\mathcal{E}_{Nbc}(E_{B_1})$ has a dense range, hence its transpose from $\mathscr{C}_{Nbc}(E_B)$ into $\mathscr{C}_{Nbc}(E_B)$ is injective. Then algebraically one has, from (1), that

 $\mathscr{E}'(E)$ = inductive limit of $\mathscr{E}'_{\text{Nbc}}(E_B)$,

when B is in $\mathcal{B}(E)$ and E_B is a separable Hilbert space (and the equicontinuous subsets of $\mathscr{E}'(E)$ are the subsets contained and equicontinuous in some $\mathscr{E}_{\text{Nbc}}(E_B)$).

Thus, since $\mathcal F$ is injective, we have

 $\mathcal{F}\mathcal{E}'(E)$ = inductive limit of $\mathcal{F}\mathcal{E}'_{\text{Nbc}}(E_B)$

when $B \in \mathcal{B}(E)$ is such that E_B is a separable Hilbert space. Now, by Abuabara $[1],$ $\mathcal{F}\mathscr{C}_{Nbc}(E_B) = A_{eq}((E_B)c)$ is the vector space of all f in $\mathcal{H}((E_B)c)$, such that:

(1) there are constants $c > 0$, $m > 0$ and $\nu \in \mathbb{N}$, such that

$$
|f(\xi)| \leq c (1 + ||\xi||_B)^r \exp(m ||\text{Im }\xi||_B),
$$

for every $\xi \in (E_B)^c_c$, where Im ξ denotes the imaginary part of ξ .

(2) The family $({\xi_n})_n$ in Y' (where Y is the vector subspace of ${\mathscr{E}}_{Nbc}(E_B)$ generated by all the mappings of the form e^{μ} : $E_B \rightarrow C$ where $\varphi \in E_B$, defined by

$$
g = \sum_{j=1}^l \alpha_j e^{i\varphi_j} \in Y \to \xi_n(g) = \sum_{j=1}^l \alpha_j f(\varphi_j \circ P_n)
$$

is equicontinuous. (P_n : $E_B \rightarrow E_B$ are the projections on the first *n* vectors of a basis of E_B .)

Then

 $\mathcal{F}\mathcal{E}'(E)$ = inductive limit of $A_{eq}((E_B')_c)$.

This remark gives the Paley-Wiener-Schwartz theorem proved in Ansemil-Colombeau [2] with another method.

Now, let E be a real nuclear l.c.s. and let E' be the dual of E with its equicontinuous bornology.

DEFINITION 4.3. We denote by A the vector subspace of $\mathcal{H}_s(E_c)$ made of the functions f such that, for every convex balanced 0-neighbourhood V in E , such that E_V is a separable pre-Hilbert space,

(1) $|f/(E_v)_{c}(x)| \leq c(1 + ||x||_v)^v \exp(m ||\text{Im }x||_v)$ for every x in $(E_v)_{c}$ and some $c > 0$, ν , $m > 0$ (we recall that $(E_v)_{c} = (E_v)_c$ and that V denotes the polar set of V).

(2) The sequence $(\xi_n)_n$ in Y_v (where $Y_v \subset \mathscr{E}_b(E_v)$ is the subspace spanned by the functions of the form e^{μ} , $\varphi \in (E_V)'$, defined by

$$
g=\sum_{j=1}^l\alpha_je^{i\varphi_j}\to\xi_n(g)=\sum_{j=1}^l\alpha_jf(\varphi_j\circ P_n)
$$

(where $P_n : E_v \to E_v$ are the projections on the first *n* vectors of a basis of E_v), is equicontinuous.

We remark that from (1) of the latter definition, $\mathcal A$ is contained in $Exp_s(E'_c)$ (see definition 6.4 in Colombeau-Matos [7]).

This space $\mathcal A$ is equipped with its bornology naturally derived from (1) and (2), that is, a family $(f_i)_{i \in I}$ is bounded iff for every V in (1) the constants c, v, m are uniform in $i \in I$ and in (2) the family $(\xi_{n,i})_{i,n}$ is equicontinuous.

Let us equip the space $\mathcal{E}_{\alpha b}(E)$ with its equicontinuous bornology.

THEOREM 4.4. *The Fourier transform* $\mathcal F$ is a bornological isomorphism between $\mathscr{E}^{\prime}_{\mathsf{ub}}(E)$ and \mathscr{A} .

PROOF. Let V be a convex balanced 0-neighbourhood in E such that E_V is a separable pre-Hilbert space and let us denote by $s_v : E \to E_v$ the canonical surjective map. Let 's_v: $(E_v)_c^{\prime} \rightarrow E_c^{\prime}$ be its transpose *('s_v* is injective).

We have the map:

$$
\mathscr{E}_{\text{Nbc}}(E_V) \xrightarrow{I_V} \mathscr{E}_{\text{ub}}(E)
$$

$$
f \longrightarrow f \circ s_V
$$

and its transpose *'Iv.*

Let T be an element of $\mathcal{E}_{\omega}^{\prime}(E)$ and ξ be in 's_v(E_v)_c', that is, $\xi =$ 's_v(μ) = $\mu \circ s_v$ for some μ in $(E_v)_c'$. Thus

$$
\begin{aligned} {}^t\tilde{I}_V(\tilde{T})(\mu) = {}^tI_V(T)(e^{i\mu}) &= (T \circ I_V)(e^{i\mu}) = T(e^{i(\mu \circ s_V)}) \\ &= T(e^{i\xi}) = \mathscr{F}T(\xi), \end{aligned}
$$

where \land denotes the usual Fourier transform in $\mathscr{E}_{Nbc}(E_V)$.

Hence $\mathscr{F}T/\mathscr{S}_V(E_V)_{C} = \mathscr{T}_V(T)$ belongs to $A_{eq}((E_V)_C)$, by Abuabara [1]. Since it holds for every V, $\mathscr{F}T \in \mathscr{A}$.

Conversely, let U be in \mathcal{A} . Given a 0-neighbourhood V in E, such that E_V is a separable pre-Hilbert space, $U/(E)\psi$ _c belongs to $A'_{eq}(((E)\psi)_c)$. Thus $U \circ 's_V$ is in $A_{eq}((E_V)'_c)$. By Abuabara [1], there is an element T_V in $\mathcal{E}_{Nbc}'(E_V)$, such that $\widehat{T_v} = (U \circ 's_V)$. Hence $T_v(e^{\mu}) = U({}^s s_V(\mu))$, for every μ in $(E_v)_c^{\prime}$. If $V_1 \subset V_2$ are two 0-neighbourhoods in *E*,

$$
{}^{\mathrm{t}}s_{V_2}(E\,V_2)_c\subset {}^{\mathrm{t}}s_{V_1}(E\,V_1)_c
$$

and we have a restriction mapping

 $r:~\mathscr{E}_{\text{Nbc}}(E_V) \longrightarrow~\mathscr{E}_{\text{Nbc}}(E_V)$, $\varphi \longrightarrow \varphi/E_v$.

 $T_{v_2}(\varphi) = T_{v_1}(r(\varphi))$, for every φ in $\mathscr{E}_{Nbc}(E_{v_2})$, since

$$
T_{V_2}(e^{i\xi})=U({}^t s_{V_2}(\xi)),
$$

and

$$
T_{V_1}(e^{u(\xi)}) = U({}^{\xi}S_{V_1} \circ r(\xi)) = U({}^{\xi}S_{V_2}(\xi))
$$

and since $\{e^{i\xi}, \xi \in (E_v)_c\}$ is dense in $\mathcal{E}_{Nbc}(E_v)$ (see Abuabara [1]).

Now we define T from $\mathcal{E}_{ub}(E)$ into C by $T(f) = T_V(f_V)$, if $f = f_V \circ s_V$, with $f_v \in \mathscr{E}_{Nbc}(E_v)$. Then $\mathscr{F}T = U$ and we have the algebraic equality between $\mathcal{F}(\mathcal{E}_{\mu b}(E))$ and \mathcal{A} .

We remark that the Fourier transform from $\mathcal{E}_{Nbc}(E_v)$ onto $A_{eq}((E_v)_c)$ is a bounded mapping. This follows using Abuabara's proof:

Let ${f_\alpha}_{\alpha\in I}$ be a bounded subset of $\mathcal{E}_{Nbc}(E_V)$. Then there are $c > 0$, m, $\nu \in \mathbb{N}$ such that

$$
|f_{\alpha}(g)| \leq c \cdot \sup\{\|\hat{d}^k g(x)\|_{\mathbb{N}}, k \leq \nu, \|x\| \leq m\},\
$$

for every $\alpha \in I$. Now if $\xi = \varphi + i\psi$ is in $(E_V)'_C$, then for $k \le \nu$,

$$
\hat{d}^k(e^{i\xi})(x) = (i)^k e^{i\xi}(x) \cdot \xi^k.
$$

Therefore,

$$
\sup\{\|\hat{d}^k(e^{i\xi})(x)\|_N,\,k\leq \nu,\|x\|\leq m\}\leq (1+\|\xi\|)^{\nu}e^{m\|x\|-\xi\|}
$$

and

$$
\left|\hat{f}_{\alpha}(\xi)\right| = \left|f_{\alpha}(e^{\alpha \xi})\right| \leq c\left(1+\|\xi\|\right)^{\nu} e^{\frac{m\left|\left|\ln\left(\xi\right)\right|}{\xi}}.
$$

The equicontinuity of the family $({\xi_{n,\alpha}})_{n,\alpha}$ defined in (2) in the definition of $A_{eq}((E'_\nu)_c)$ follows from the equicontinuity of $(f_\alpha)_{\alpha \in I}$. Then ${\hat{f}_\alpha}_{\alpha \in I}$ is a bounded subset of $A_{eq}((E\sqrt[n]{c}).$

Since $\mathscr{E}_{Nbc}(E_v)$ and $A_{co}((E_v)_c)$ are complete b.v.s. and $\mathscr{E}_{Nbc}(E_v)$ has a countable basis, the closed graph theorem (Hogbe-Nlend [12], prop. 2, p. 44) gives that this Fourier transform is a bornological isomorphism.

The bornological isomorphism in Theorem 4.4 follows from this.

REFERENCES

1. T. Abuabara, *A version of the Paley-Wiener-Schwartz theorem in infinite dimension,* in *Advances in Holomorphy* (J. A. Barroso, ed.), North-Holland Mathematics Studies, 34, 1979.

2. J. M. Ansemil and J. F. Colombeau, The *Paley-Wiener-Schwartz isomorphism in nuclear spaces,* Rev. Roum. Math. Pures Appl. 26 (1981), 169-181.

3. R. M. Aron and J. B. Prolla, *Polynomial approximation of differentiable functions on Banach spaces,* J. Reine Angew. Math. 313 (1980), 195-216.

4. J. F. Colombeau, *Differential calculus and holomorphy,* in *Real and Complex Analysis in Locally Convex Spaces,* North-Holland Math. Studies, 64, 1982.

5. J. F. Colombeau, *A multiplication of distributions,* J. Math. Anal. Appl., in press.

6. J. F. Colombeau, *New generalized functions, multiplication of distributions, Physical applications, Contributions of Z Sebastifio e Silva,* Port. Math., in press.

7. J. F. Colombeau and M. Matos, *Convolution equations in spaces of infinite dimensional entire functions,* Proc. K. Ned. Akad. Wet., Ser. A, 83 (4) (1980), 357.

8. J. F. Colombean and M. Matos, *On some spaces of entire functions defined on infinite dimensional spaces,* Pac. J. Math. 92 (2) (1981).

9. J. F. Colombeau and J. Mujica, *Holomorphic and C'-functions of uniform bounded type,* in *Functional Analysis, Holomorphy and Approximation Theory* (J. A. Barroso, ed.), North-Holland Math. Studies 71, 1982, pp. 179-200.

10. J. F. Colombeau and O. W. Paques, *Finite-difference partial differential equations in normed and locally convex spaces,* in *Functional Analysis, Holomorphy and Approximation Theory* (J. A. Barroso, ed.), North-Holland Math. Studies 71, 1982, pp. 201-214.

11. C. P. Gupta, *Malgrange Theorem for nuclearly entire functions of bounded type on Banach* spaces, Thesis, University of Rochester, 1966, Notas de Matemática, 37 IMPA, Rio de Janeiro, 1968.

12. H. Hogbe-Nlend, *Théorie des Bornologies et Applications*, Lecture Notes in Math. 213, Springer-Verlag, 1971.

13. L. Nachbin and S. Dineen, *Entire functions of exponential type bounded on the real axis and Fourier transforms of distributions with bounded support,* Isr. J. Math. 13 (1972), 321-326.

14. H. Schaefer, *Topological Vector Spaces,* Springer-Verlag, Berlin, 1971.

15. F. Tr6ves, *Topological Vector Spaces, Distributions and Kernels,* Academic Press, New York-London, 1967.

U.E.R. DE MATHÉMATIQUES ET D'INFORMATIQUE

UNIVERSITÉ DE BORDEAUX 1 33.405 TALENCE, FRANCE

DEPARTAMENTO DE MATEMATICA IMECC, UNICAMP UNIVERSIDADE ESTADUAL DE CAMPINAS

13.100 CAMPINAS SP, BRASIL